Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 192(3): 1928-1946, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36718552

ABSTRACT

Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the upregulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being upregulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologs to the NAC transcription factor AtNAP, VviNAC60 complemented the nonripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.


Subject(s)
Transcription Factors , Vitis , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling , Fruit/metabolism , Plant Proteins/metabolism , Vitis/physiology
2.
Nat Genet ; 50(9): 1282-1288, 2018 09.
Article in English | MEDLINE | ID: mdl-30061736

ABSTRACT

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


Subject(s)
DNA Transposable Elements/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Zea mays/genetics , Chromatin/genetics , Chromosomes, Plant/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Genomics/methods , Open Reading Frames/genetics , Sequence Analysis, DNA/methods
3.
J Exp Bot ; 68(17): 4869-4884, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28992179

ABSTRACT

MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expression levels in seeds and in central tissues of young fruits. The potential effects of Sl-AGL11 on fruit development were addressed through RNAi silencing and ectopic expression strategies. Sl-AGL11-down-regulated tomato lines failed to show obvious phenotypes except a slight reduction in seed size. In contrast, Sl-AGL11 overexpression triggered dramatic modifications of flower and fruit structure that include: the conversion of sepals into fleshy organs undergoing ethylene-dependent ripening, a placenta hypertrophy to the detriment of locular space, starch and sugar accumulation, and an extreme softening that occurs well before the onset of ripening. RNA-Seq transcriptomic profiling highlighted substantial metabolic reprogramming occurring in sepals and fruits, with major impacts on cell wall-related genes. While several Sl-AGL11-related phenotypes are reminiscent of class C MADS-box genes (TAG1 and TAGL1), the modifications observed on the placenta and cell wall and the Sl-AGL11 expression pattern suggest an action of this class D MADS-box factor on early fleshy fruit development.


Subject(s)
Flowers/growth & development , Fruit/growth & development , Gene Expression , MADS Domain Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Flowers/genetics , Fruit/genetics , Gene Expression Profiling , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , MADS Domain Proteins/metabolism , Plant Proteins/metabolism
4.
Plant Cell ; 26(2): 585-601, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24510723

ABSTRACT

Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits.


Subject(s)
Fruit/growth & development , Plant Proteins/metabolism , Solanum lycopersicum/growth & development , Transcription Factors/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Ethylenes/metabolism , Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Histones/metabolism , Solanum lycopersicum/genetics , Lysine/metabolism , Methylation , Mutation/genetics , Organ Specificity/genetics , Phenotype , Photosynthesis/genetics , Plant Leaves/anatomy & histology , Plant Proteins/genetics , Plants, Genetically Modified , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...