Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5434, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686185

ABSTRACT

Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.


Subject(s)
Autophagy/drug effects , Cannabidiol/pharmacology , MAP Kinase Signaling System/drug effects , Neurodegenerative Diseases/drug therapy , Animals , Cannabidiol/chemistry , Cannabis/chemistry , Cell Line, Tumor , Humans , Mice
2.
Neurotox Res ; 35(3): 516-529, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30607903

ABSTRACT

The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aß deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.


Subject(s)
Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cognition Disorders/drug therapy , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , Receptor, Cannabinoid, CB1/agonists , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cognition Disorders/metabolism , Male , Mice , Nerve Degeneration/drug therapy , Nerve Degeneration/metabolism , Nitric Oxide/metabolism , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Streptozocin
3.
Neurotox Res ; 33(4): 846-855, 2018 05.
Article in English | MEDLINE | ID: mdl-29134561

ABSTRACT

Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.


Subject(s)
Apoptosis/drug effects , Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Endoplasmic Reticulum Stress/drug effects , Neurons/drug effects , Animals , Cell Survival/drug effects , Endoplasmic Reticulum/drug effects , Lipopolysaccharides/pharmacology , Neuroprotective Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...