Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 509(7501): 471-4, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24848059

ABSTRACT

The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

2.
Nature ; 442(7106): 1011-3, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16943831

ABSTRACT

Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

3.
Nature ; 441(7092): 463-8, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16688183

ABSTRACT

When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

SELECTION OF CITATIONS
SEARCH DETAIL
...