Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Mult Scler ; 30(1): 44-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018502

ABSTRACT

BACKGROUND: Whether the degree of inflammation (and its resolution) and neurodegeneration after treatment initiation predicts disease progression in multiple sclerosis (MS) remains unclear. OBJECTIVES: To assess the predictive value of magnetic resonance imaging (MRI)-derived brain and lesion volume (LV) changes in years 1 and 2 of treatment for disease progression. METHODS: Patients receiving early interferon beta-1a treatment in REFLEX/REFLEXION (N = 262) were included. Predictive regression models included new/enlarging LV (positive activity), disappearing/shrinking LV (negative activity), and global/central atrophy during years 1 and 2. RESULTS: Faster global atrophy and/or pseudo-atrophy and positive lesion activity in years 1 and 2 related to an increased probability and faster conversion to clinically definite multiple sclerosis (CDMS). Negative lesion activity in year 1 and slower central atrophy in year 2 were predictive of confirmed disability progression (9-Hole Peg Test). Positive lesion activity in year 2 was predictive of faster global atrophy, while positive lesion activity in years 1 and 2 was predictive of faster central atrophy. CONCLUSIONS: A higher degree of global atrophy and/or pseudo-atrophy in year 1 was predictive of CDMS. Positive lesion activity in any year was related to CDMS and neurodegeneration. Disability was related to negative lesion activity in year 1 and slower central atrophy in year 2.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Interferon beta-1a , Disease Progression , Atrophy/pathology , Magnetic Resonance Imaging/methods
2.
Neuroradiology ; 65(10): 1459-1472, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526657

ABSTRACT

PURPOSE: Volume measurement using MRI is important to assess brain atrophy in multiple sclerosis (MS). However, differences between scanners, acquisition protocols, and analysis software introduce unwanted variability of volumes. To quantify theses effects, we compared within-scanner repeatability and between-scanner reproducibility of three different MR scanners for six brain segmentation methods. METHODS: Twenty-one people with MS underwent scanning and rescanning on three 3 T MR scanners (GE MR750, Philips Ingenuity, Toshiba Vantage Titan) to obtain 3D T1-weighted images. FreeSurfer, FSL, SAMSEG, FastSurfer, CAT-12, and SynthSeg were used to quantify brain, white matter and (deep) gray matter volumes both from lesion-filled and non-lesion-filled 3D T1-weighted images. We used intra-class correlation coefficient (ICC) to quantify agreement; repeated-measures ANOVA to analyze systematic differences; and variance component analysis to quantify the standard error of measurement (SEM) and smallest detectable change (SDC). RESULTS: For all six software, both between-scanner agreement (ICCs ranging 0.4-1) and within-scanner agreement (ICC range: 0.6-1) were typically good, and good to excellent (ICC > 0.7) for large structures. No clear differences were found between filled and non-filled images. However, gray and white matter volumes did differ systematically between scanners for all software (p < 0.05). Variance component analysis yielded within-scanner SDC ranging from 1.02% (SAMSEG, whole-brain) to 14.55% (FreeSurfer, CSF); and between-scanner SDC ranging from 4.83% (SynthSeg, thalamus) to 29.25% (CAT12, thalamus). CONCLUSION: Volume measurements of brain, GM and WM showed high repeatability, and high reproducibility despite substantial differences between scanners. Smallest detectable change was high, especially between different scanners, which hampers the clinical implementation of atrophy measurements.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Gray Matter/pathology , Cross-Sectional Studies , Reproducibility of Results , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology , Software
3.
J Neurol Neurosurg Psychiatry ; 94(11): 916-923, 2023 11.
Article in English | MEDLINE | ID: mdl-37321841

ABSTRACT

BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping/methods , Phenotype , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging
4.
Neuroimage Clin ; 38: 103397, 2023.
Article in English | MEDLINE | ID: mdl-37086648

ABSTRACT

BACKGROUND: White matter (WM) lesions and brain atrophy are present early in multiple sclerosis (MS). However, their spatio-temporal relationship remains unclear. METHODS: Yearly magnetic resonance images were analysed in 387 patients with a first clinical demyelinating event (FCDE) from the 5-year REFLEXION study. Patients received early (from baseline; N = 258; ET) or delayed treatment (from month-24; N = 129; DT) with subcutaneous interferon beta-1a. FSL-SIENA/VIENA were used to provide yearly percentage volume change of brain (PBVC) and ventricles (PVVC). Yearly total lesion volume change (TLVC) was determined by a semi-automated method. Using linear mixed models and voxel-wise analyses, we firstly investigated the overall relationship between TLVC and PBVC and between TLVC and PVVC in the same follow-up period. Analyses were then separately performed for: the untreated period of DT patients (first two years), the first year of treatment (year 1 for ET and year 3 for DT), and a period where patients had received at least 1 year of treatment (stable treatment; ET: years 2, 3, 4, and 5; DT: years 4 and 5). RESULTS: Whole brain: across the whole study period, lower TLVC was related to faster atrophy (PBVC: B = 0.046, SE = 0.013, p < 0.001; PVVC: B = -0.466, SE = 0.118, p < 0.001). Within the untreated period of DT patients, lower TLVC was related to faster atrophy (PBVC: B = 0.072, SE = 0.029, p = 0.013; PVVC: B = -0.917, SE = 0.306, p = 0.003). A similar relationship was found within the first year of treatment of ET patients (PBVC: B = 0.081, SE = 0.027, p = 0.003; PVVC: B = -1.08, SE = 0.284, p < 0.001), consistent with resolving oedema and pseudo-atrophy. Voxel-wise: overall, higher TLVC was related to faster ventricular enlargement. Lower TLVC was related to faster widespread atrophy in year 1 in both ET (first year of treatment) and DT (untreated) patients. In the second untreated year of DT patients and within the stable treatment period of ET patients (year 4), faster periventricular and occipital lobe atrophy was associated with higher TLVC. CONCLUSIONS: WM lesion changes and atrophy occurred simultaneously in early MS. Spatio-temporal correspondence of these two processes involved mostly the periventricular area. Within the first year of the study, in both treatment groups, faster atrophy was linked to lower lesion volume changes, consistent with higher shrinking and disappearing lesion activity. This might reflect the pseudo-atrophy phenomenon that is probably related to the therapy driven (only in ET patients, as they received treatment from baseline) and "natural" (both ET and DT patients entered the study after a FCDE) resolution of oedema. In an untreated period and later on during stable treatment, (real) atrophy was related to higher lesion volume changes, consistent with increased new and enlarging lesion activity.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Brain/diagnostic imaging , Brain/pathology , Interferon beta-1a/therapeutic use , Magnetic Resonance Imaging/methods , Atrophy/pathology , Disease Progression
5.
J Neurol Neurosurg Psychiatry ; 94(1): 10-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36171105

ABSTRACT

OBJECTIVES: To evaluate the combined contribution of brain and cervical cord damage in predicting 5-year clinical worsening in a multicentre cohort of definite multiple sclerosis (MS) patients. METHODS: Baseline 3.0T brain and cervical cord T2-weighted and three-dimensional T1-weighted MRI was acquired in 367 patients with MS (326 relapse-onset and 41 progressive-onset) and 179 healthy controls. Expanded Disability Status Scale (EDSS) score was obtained at baseline and after a median follow-up of 5.1 years (IQR=4.8-5.2). At follow-up, patients were classified as clinically stable/worsened according to EDSS changes. Generalised linear mixed models identified predictors of clinical worsening, evolution to secondary progressive (SP) MS and reaching EDSS=3.0, 4.0 and 6.0 milestones at 5 years. RESULTS: At follow-up, 120/367 (33%) patients with MS worsened clinically; 36/256 (14%) patients with relapsing-remitting evolved to SPMS. Baseline predictors of EDSS worsening were progressive-onset versus relapse-onset MS (standardised beta (ß)=0.97), higher EDSS (ß=0.41), higher cord lesion number (ß=0.41), lower normalised cortical volume (ß=-0.15) and lower cord area (ß=-0.28) (C-index=0.81). Older age (ß=0.86), higher EDSS (ß=1.40) and cord lesion number (ß=0.87) independently predicted SPMS conversion (C-index=0.91). Predictors of reaching EDSS=3.0 after 5 years were higher baseline EDSS (ß=1.49), cord lesion number (ß=1.02) and lower normalised cortical volume (ß=-0.56) (C-index=0.88). Baseline age (ß=0.30), higher EDSS (ß=2.03), higher cord lesion number (ß=0.66) and lower cord area (ß=-0.41) predicted EDSS=4.0 (C-index=0.92). Finally, higher baseline EDSS (ß=1.87) and cord lesion number (ß=0.54) predicted EDSS=6.0 (C-index=0.91). CONCLUSIONS: Spinal cord damage and, to a lesser extent, cortical volume loss helped predicting worse 5-year clinical outcomes in MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Spinal Cord Diseases , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Atrophy/pathology , Spinal Cord Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Recurrence , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Disability Evaluation
6.
Neuroimage ; 264: 119680, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36240989

ABSTRACT

Quantitative MRI (qMRI) acquired at the ultra-high field of 7 Tesla has been used in visualizing and analyzing subcortical structures. qMRI relies on the acquisition of multiple images with different scan settings, leading to extended scanning times. Data redundancy and prior information from the relaxometry model can be exploited by deep learning to accelerate the imaging process. We propose the quantitative Recurrent Inference Machine (qRIM), with a unified forward model for joint reconstruction and R2*-mapping from sparse data, embedded in a Recurrent Inference Machine (RIM), an iterative inverse problem-solving network. To study the dependency of the proposed extension of the unified forward model to network architecture, we implemented and compared a quantitative End-to-End Variational Network (qE2EVN). Experiments were performed with high-resolution multi-echo gradient echo data of the brain at 7T of a cohort study covering the entire adult life span. The error in reconstructed R2* from undersampled data relative to reference data significantly decreased for the unified model compared to sequential image reconstruction and parameter fitting using the RIM. With increasing acceleration factor, an increasing reduction in the reconstruction error was observed, pointing to a larger benefit for sparser data. Qualitatively, this was following an observed reduction of image blurriness in R2*-maps. In contrast, when using the U-Net as network architecture, a negative bias in R2* in selected regions of interest was observed. Compressed Sensing rendered accurate, but less precise estimates of R2*. The qE2EVN showed slightly inferior reconstruction quality compared to the qRIM but better quality than the U-Net and Compressed Sensing. Subcortical maturation over age measured by a linearly increasing interquartile range of R2* in the striatum was preserved up to an acceleration factor of 9. With the integrated prior of the unified forward model, the proposed qRIM can exploit the redundancy among repeated measurements and shared information between tasks, facilitating relaxometry in accelerated MRI.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Adult , Humans , Image Processing, Computer-Assisted/methods , Cohort Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
7.
Neuroimage Clin ; 36: 103220, 2022.
Article in English | MEDLINE | ID: mdl-36274376

ABSTRACT

BACKGROUND: White matter lesions and brain atrophy are both present early in multiple sclerosis. However, the spatio-temporal relationship between atrophy and lesion processes remains unclear. METHODS: Yearly magnetic resonance images were analyzed in 392 patients with clinically isolated syndrome from the 5-year REFLEX/REFLEXION studies. Patients received early treatment (from baseline; N = 262) or delayed treatment (from month-24; N = 130) with subcutaneous interferon beta-1a. Global and central atrophy were assessed using FSL-SIENA to provide yearly percentage volume change of brain and ventricles, respectively. Yearly total lesion volume change was calculated by subtracting the sum of the negative lesion volume change (disappearing + shrinking) from the positive lesion volume change (new + enlarging) for each yearly interval, as determined by an in-house developed semi-automated method. Using linear mixed models, during the period where patients had received ≥1 year of treatment, we investigated whether total lesion volume change was associated with percentage brain volume change or percentage ventricular volume change in the next year, and vice versa. RESULTS: Higher total lesion volume change was related to significantly faster global atrophy (percentage brain volume change) in the next year (B = - 0.113, SE = 0.022, p < 0.001). In patients receiving early treatment only, total lesion volume change was also associated with percentage ventricular volume change in the next year (B = 1.348, SE = 0.181, p < 0.001). Voxel-wise analyses showed that in patients receiving early treatment, higher total lesion volume change in years 2, 3, and 4 was related to faster atrophy in the next year, and in year 4 this relationship was stronger in patients receiving delayed treatment. Interestingly, faster atrophy was related to higher total lesion volume change in the next year (percentage brain volume change: B = - 0.136, SE = 0.062, p = 0.028; percentage ventricular volume change: B = 0.028, SE = 0.008, p < 0.001). CONCLUSIONS: Higher lesion volume changes were associated with faster atrophy in the next year. Interestingly, there was also an association between faster atrophy and higher lesion volume changes in the next year.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Neurodegenerative Diseases , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Disease Progression , Atrophy/pathology , Demyelinating Diseases/pathology , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Neurodegenerative Diseases/pathology
8.
Article in English | MEDLINE | ID: mdl-35649699

ABSTRACT

BACKGROUND: The predictive value of serum neurofilament light chain (sNfL) on long-term prognosis in multiple sclerosis (MS) is still unclear. OBJECTIVE: Investigate the relation between sNfL levels over a 2-year period in patients with relapsing-remitting MS, and clinical disability and grey matter (GM) atrophy after 10 years. METHODS: 85 patients, originally enrolled in a multicentre, randomised trial of ω-3 fatty acids, participated in a 10-year follow-up visit. sNfL levels were measured by Simoa quarterly until month 12, and then at month 24. The appearance of new gadolinium-enhancing (Gd+) lesions was assessed monthly between baseline and month 9, and then at months 12 and 24. At the 10-year follow-up visit, brain atrophy measures were obtained using FreeSurfer. RESULTS: Higher mean sNfL levels during early periods of active inflammation (Gd+ lesions present or recently present) predicted lower total (ß=-0.399, p=0.040) and deep (ß=-0.556, p=0.010) GM volume, lower mean cortical thickness (ß=-0.581, p=0.010) and higher T2 lesion count (ß=0.498, p=0.018). Of the clinical outcomes, higher inflammatory sNfL levels were associated with higher disability measured by the dominant hand Nine-Hole Peg Test (ß=0.593, p=0.004). Mean sNfL levels during periods of remission (no Gd+ lesions present or recently present) did not predict GM atrophy or disability progression. CONCLUSION: Higher sNfL levels during periods of active inflammation predicted more GM atrophy and specific aspects of clinical disability 10 years later. The findings suggest that subsequent long-term GM atrophy is mainly due to neuroaxonal degradation within new lesions.

9.
Article in English | MEDLINE | ID: mdl-35738901

ABSTRACT

BACKGROUND AND OBJECTIVES: The relationship between smoking, long-term brain atrophy, and clinical disability in patients with multiple sclerosis (MS) is unclear. Here, we assessed long-term effects of smoking by evaluating MRI and clinical outcome measures after 10 years in smoking and nonsmoking patients with relapsing-remitting MS (RRMS). METHODS: We included 85 treatment-naive patients with RRMS with recent inflammatory disease activity who participated in a 10-year follow-up visit after a multicenter clinical trial of 24 months. Smoking status was decided for each patient by 2 separate definitions: by serum cotinine levels measured regularly for the first 2 years of the follow-up (during the clinical trial) and by retrospective patient self-reporting. At the 10-year follow-up visit, clinical tests were repeated, and brain atrophy measures were obtained from MRI using FreeSurfer. Differences in clinical and MRI measurements at the 10-year follow-up between smokers and nonsmokers were investigated by 2-sample t tests or Mann-Whitney tests and linear mixed-effect regression models. All analyses were conducted separately for each definition of smoking status. RESULTS: After 10 years, smoking (defined by serum cotinine levels) was associated with lower total white matter volume (ß = -21.74, p = 0.039) and higher logT2 lesion volume (ß = 0.22, p = 0.011). When defining smoking status by patient self-reporting, the repeated analyses found an additional association with lower deep gray matter volume (ß = -2.35, p = 0.049), and smoking was also associated with a higher score (higher walking impairment) on the log timed 25-foot walk test (ß = 0.050, p = 0.039) after 10 years and a larger decrease in paced auditory serial addition test (attention) scores (ß = -3.58, p = 0.029). DISCUSSION: Smoking was associated with brain atrophy and disability progression 10 years later in patients with RRMS. The findings imply that patients should be advised and offered aid in smoking cessation shortly after diagnosis, to prevent long-term disability progression.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Atrophy/pathology , Cotinine , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Retrospective Studies , Smoking/adverse effects
10.
Eur Radiol ; 32(11): 7789-7799, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35639148

ABSTRACT

OBJECTIVES: Neurodegeneration in suspected Alzheimer's disease can be determined using visual rating or quantitative volumetric assessments. We examined the feasibility of volumetric measurements of gray matter (GMV) and hippocampal volume (HCV) and compared their diagnostic performance with visual rating scales in academic and non-academic memory clinics. MATERIALS AND METHODS: We included 231 patients attending local memory clinics (LMC) in the Netherlands and 501 of the academic Amsterdam Dementia Cohort (ADC). MRI scans were acquired using local protocols, including a T1-weighted sequence. Quantification of GMV and HCV was performed using FSL and FreeSurfer. Medial temporal atrophy and global atrophy were assessed with visual rating scales. ROC curves were derived to determine which measure discriminated best between cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's dementia (AD). RESULTS: Patients attending LMC (age 70.9 ± 8.9 years; 47% females; 19% CN; 34% MCI; 47% AD) were older, had more cerebrovascular pathology, and had lower GMV and HCV compared to those of the ADC (age 64.9 ± 8.2 years; 42% females; 35% CN, 43% MCI, 22% AD). While visual ratings were feasible in > 95% of scans in both cohorts, quantification was achieved in 94-98% of ADC, but only 68-85% of LMC scans, depending on the software. Visual ratings and volumetric outcomes performed similarly in discriminating CN vs AD in both cohorts. CONCLUSION: In clinical settings, quantification of GM and hippocampal atrophy currently fails in up to one-third of scans, probably due to lack of standardized acquisition protocols. Diagnostic accuracy is similar for volumetric measures and visual rating scales, making the latter suited for clinical practice. In a real-life clinical setting, volumetric assessment of MRI scans in dementia patients may require acquisition protocol optimization and does not outperform visual rating scales. KEY POINTS: • In a real-life clinical setting, the diagnostic performance of visual rating scales is similar to that of automatic volumetric quantification and may be sufficient to distinguish Alzheimer's disease groups. • Volumetric assessment of gray matter and hippocampal volumes from MRI scans of patients attending non-academic memory clinics fails in up to 32% of cases. • Clinical MR acquisition protocols should be optimized to improve the output of quantitative software for segmentation of Alzheimer's disease-specific outcomes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hepatitis C , Female , Humans , Middle Aged , Aged , Male , Alzheimer Disease/diagnosis , Atrophy , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/pathology
11.
J Neurol Neurosurg Psychiatry ; 93(7): 741-752, 2022 07.
Article in English | MEDLINE | ID: mdl-35580993

ABSTRACT

OBJECTIVES: To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS: In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS: In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (ß from -1.168 to 0.286, p≤0.040). CONCLUSIONS: T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.


Subject(s)
Brain Injuries , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Brain/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Retrospective Studies , White Matter/diagnostic imaging , White Matter/pathology
12.
Eur J Neurol ; 29(7): 2024-2035, 2022 07.
Article in English | MEDLINE | ID: mdl-35274413

ABSTRACT

BACKGROUND AND PURPOSE: In the REFLEX trial (ClinicalTrials.gov identifier: NCT00404352), patients with a first clinical demyelinating event (FCDE) displayed significantly delayed onset of multiple sclerosis (MS; McDonald criteria) when treated with subcutaneous interferon beta-1a (sc IFN ß-1a) versus placebo. This post hoc analysis evaluated the effect of sc IFN ß-1a on spatio-temporal evolution of disease activity, assessed by changes in T2 lesion distribution, in specific brain regions of such patients and its relationship with conversion to MS. METHODS: Post hoc analysis of baseline and 24-month magnetic resonance imaging data from FCDE patients who received sc IFN ß-1a 44 µg once or three times weekly, or placebo in the REFLEX trial. Patients were grouped according to McDonald MS status (converter/non-converter) or treatment (sc IFN ß-1a/placebo). For each patient group, a baseline lesion probability map (LPM) and longitudinal new/enlarging and shrinking/disappearing LPMs were created. Lesion location/frequency of lesion occurrence were assessed in the white matter. RESULTS: At Month 24, lesion frequency was significantly higher in the anterior thalamic radiation (ATR) and corticospinal tract (CST) of converters versus non-converters (p < 0.05). Additionally, the overall distribution of new/enlarging lesions across the brain at Month 24 was similar in placebo- and sc IFN ß-1a-treated patients (ratio: 0.95). Patients treated with sc IFN ß-1a versus placebo showed significantly lower new lesion frequency in specific brain regions (cluster corrected): ATR (p = 0.025), superior longitudinal fasciculus (p = 0.042), CST (p = 0.048), and inferior longitudinal fasciculus (p = 0.048). CONCLUSIONS: T2 lesion distribution in specific brain locations predict conversion to McDonald MS and show significantly reduced new lesion occurrence after treatment with sc IFN ß-1a in an FCDE population.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Interferon beta-1a/therapeutic use , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Reflex , Treatment Outcome
13.
Neuroimage Clin ; 34: 102972, 2022.
Article in English | MEDLINE | ID: mdl-35245791

ABSTRACT

There is an increasing need of sharing harmonized data from large, cooperative studies as this is essential to develop new diagnostic and prognostic biomarkers. In the field of multiple sclerosis (MS), the issue has become of paramount importance due to the need to translate into the clinical setting some of the most recent MRI achievements. However, differences in MRI acquisition parameters, image analysis and data storage across sites, with their potential bias, represent a substantial constraint. This review focuses on the state of the art, recent technical advances, and desirable future developments of the harmonization of acquisition, analysis and storage of large-scale multicentre MRI data of MS cohorts. Huge efforts are currently being made to achieve all the requirements needed to provide harmonized MRI datasets in the MS field, as proper management of large imaging datasets is one of our greatest opportunities and challenges in the coming years. Recommendations based on these achievements will be provided here. Despite the advances that have been made, the complexity of these tasks requires further research by specialized academical centres, with dedicated technical and human resources. Such collective efforts involving different professional figures are of crucial importance to offer to MS patients a personalised management while minimizing consumption of resources.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging
14.
Mult Scler Relat Disord ; 60: 103713, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35272146

ABSTRACT

BACKGROUND: Upper cervical cord atrophy and lesions have been shown to be associated with disease and disability progression already in early relapsing-remitting multiple sclerosis (RRMS). However, their longitudinal relationship remains unclear. OBJECTIVE: To investigate the cross-sectional and longitudinal relation between focal T2 cervical cord lesion volume (CCLV) and regional and global mean upper cervical cord area (UCCA), and their relations with disability. METHODS: Over a two-year interval, subjects with RRMS (n = 36) and healthy controls (HC, n = 16) underwent annual clinical and MRI examinations. UCCA and CCLV were obtained from C1 through C4 level. Linear mixed model analysis was performed to investigate the relation between UCCA, CCLV, and disability over time. RESULTS: UCCA at baseline was significantly lower in RRMS subjects compared to HCs (p = 0.003), but did not decrease faster over time (p ≥ 0.144). UCCA and CCLV were independent of each other at any of the time points or cervical levels, and over time. Lower baseline UCCA, but not CCLV, was related to worsening of both upper and lower extremities function over time. CONCLUSION: UCCA and CCLV are independent from each other, both cross-sectionally and longitudinally, in early MS. Lower UCCA, but not CCLV, was related to increasing disability over time.


Subject(s)
Cervical Cord , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Atrophy/pathology , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Cross-Sectional Studies , Disability Evaluation , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/pathology
15.
Neurology ; 98(15): e1562-e1573, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35173016

ABSTRACT

BACKGROUND AND OBJECTIVES: There is currently no consensus about the extent of gray matter (GM) atrophy that can be attributed to secondary changes after white matter (WM) lesions or the temporal and spatial relationships between the 2 phenomena. Elucidating this interplay will broaden the understanding of the combined inflammatory and neurodegenerative pathophysiology of multiple sclerosis (MS), and separating atrophic changes due to primary and secondary neurodegenerative mechanisms will then be pivotal to properly evaluate treatment effects, especially if these treatments target the different processes individually. To untangle these complex pathologic mechanisms, this systematic review provides an essential first step: an objective and comprehensive overview of the existing in vivo knowledge of the relationship between brain WM lesions and GM atrophy in patients diagnosed with MS. The overall aim was to clarify the extent to which WM lesions are associated with both global and regional GM atrophy and how this may differ in the different disease subtypes. METHODS: We searched MEDLINE (through PubMed) and Embase for reports containing direct associations between brain GM and WM lesion measures obtained by conventional MRI sequences in patients with clinically isolated syndrome and MS. No restriction was applied for publication date. The quality and risk of bias in included studies were evaluated with the Quality Assessment Tool for observational cohort and cross-sectional studies (NIH, Bethesda, MA). Qualitative and descriptive analyses were performed. RESULTS: A total of 90 articles were included. WM lesion volumes were related mostly to global, cortical and deep GM volumes, and those significant associations were almost without exception negative, indicating that higher WM lesion volumes were associated with lower GM volumes or lower cortical thicknesses. The most consistent relationship between WM lesions and GM atrophy was seen in early (relapsing) disease and less so in progressive MS. DISCUSSION: The findings suggest that GM neurodegeneration is mostly secondary to damage in the WM during early disease stages while becoming more detached and dominated by other, possibly primary neurodegenerative disease mechanisms in progressive MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Neurodegenerative Diseases , White Matter , Atrophy/pathology , Brain/pathology , Cross-Sectional Studies , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnosis , Neoplasm Recurrence, Local , Neurodegenerative Diseases/pathology , White Matter/pathology
16.
Eur Radiol ; 32(5): 3576-3587, 2022 May.
Article in English | MEDLINE | ID: mdl-34978580

ABSTRACT

OBJECTIVE: To determine whether reliable brain atrophy measures can be obtained from post-contrast 3D T1-weighted images in patients with multiple sclerosis (MS) using FreeSurfer. METHODS: Twenty-two patients with MS were included, in which 3D T1-weighted MR images were obtained during the same scanner visit, with the same acquisition protocol, before and after administration of gadolinium-based contrast agents (GBCAs). Two FreeSurfer versions (v.6.0.1 and v.7.1.1.) were applied to calculate grey matter (GM) and white matter (WM) volumes and global and regional cortical thickness. The consistency between measures obtained in pre- and post-contrast images was assessed by intra-class correlation coefficient (ICC), the difference was investigated by paired t-tests, and the mean percentage increase or decrease was calculated for total WM and GM matter volume, total deep GM and thalamus volume, and mean cortical thickness. RESULTS: Good to excellent reliability was found between all investigated measures, with ICC ranging from 0.926 to 0.996, all p values < 0.001. GM volumes and cortical thickness measurements were significantly higher in post-contrast images by 3.1 to 17.4%, while total WM volume decreased significantly by 1.7% (all p values < 0.001). CONCLUSION: The consistency between values obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable brain atrophy measurements from T1-weighted images acquired after administration of GBCAs, using FreeSurfer. However, absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly. Potential systematic effects, possibly dependent on GBCA dose or the delay time after contrast injection, should be investigated. TRIAL REGISTRATION: Clinical trials.gov. identifier: NCT00360906. KEY POINTS: • The influence of gadolinium-based contrast agents (GBCAs) on atrophy measurements is still largely unknown and challenges the use of a considerable source of historical and prospective real-world data. • In 22 patients with multiple sclerosis, the consistency between brain atrophy measurements obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable atrophy measurements in T1-weighted images acquired after administration of GBCAs, using FreeSurfer. • Absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly, and measurements extracted from certain regions (e.g., the temporal pole) should be interpreted with caution.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Contrast Media , Gadolinium , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology , Prospective Studies , Reproducibility of Results
17.
Neurology ; 97(21): 989-999, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34607924

ABSTRACT

Patients with multiple sclerosis (MS) have heterogeneous clinical presentations, symptoms, and progression over time, making MS difficult to assess and comprehend in vivo. The combination of large-scale data sharing and artificial intelligence creates new opportunities for monitoring and understanding MS using MRI. First, development of validated MS-specific image analysis methods can be boosted by verified reference, test, and benchmark imaging data. Using detailed expert annotations, artificial intelligence algorithms can be trained on such MS-specific data. Second, understanding disease processes could be greatly advanced through shared data of large MS cohorts with clinical, demographic, and treatment information. Relevant patterns in such data that may be imperceptible to a human observer could be detected through artificial intelligence techniques. This applies from image analysis (lesions, atrophy, or functional network changes) to large multidomain datasets (imaging, cognition, clinical disability, genetics). After reviewing data sharing and artificial intelligence, we highlight 3 areas that offer strong opportunities for making advances in the next few years: crowdsourcing, personal data protection, and organized analysis challenges. Difficulties as well as specific recommendations to overcome them are discussed, in order to best leverage data sharing and artificial intelligence to improve image analysis, imaging, and the understanding of MS.


Subject(s)
Artificial Intelligence , Multiple Sclerosis , Algorithms , Humans , Information Dissemination , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging
18.
Front Neurol ; 12: 693333, 2021.
Article in English | MEDLINE | ID: mdl-34421797

ABSTRACT

Background: Considerable spinal cord (SC) atrophy occurs in multiple sclerosis (MS). While MRI-based techniques for SC cross-sectional area (CSA) quantification have improved over time, there is no common agreement on whether to measure at single vertebral levels or across larger regions and whether upper SC CSA can be reliably measured from brain images. Aim: To compare in a multicenter setting three CSA measurement methods in terms of repeatability at different anatomical levels. To analyze the agreement between measurements performed on the cervical cord and on brain MRI. Method: One healthy volunteer was scanned three times on the same day in six sites (three scanner vendors) using a 3T MRI protocol including sagittal 3D T1-weighted imaging of the brain (covering the upper cervical cord) and of the SC. Images were analyzed using two semiautomated methods [NeuroQLab (NQL) and the Active Surface Model (ASM)] and the fully automated Spinal Cord Toolbox (SCT) on different vertebral levels (C1-C2; C2/3) on SC and brain images and the entire cervical cord (C1-C7) on SC images only. Results: CSA estimates were significantly smaller using SCT compared to NQL and ASM (p < 0.001), regardless of the cord level. Inter-scanner repeatability was best in C1-C7: coefficients of variation for NQL, ASM, and SCT: 0.4, 0.6, and 1.0%, respectively. CSAs estimated in brain MRI were slightly lower than in SC MRI (all p ≤ 0.006 at the C1-C2 level). Despite protocol harmonization between the centers with regard to image resolution and use of high-contrast 3D T1-weighted sequences, the variability of CSA was partly scanner dependent probably due to differences in scanner geometry, coil design, and details of the MRI parameter settings. Conclusion: For CSA quantification, dedicated isotropic SC MRI should be acquired, which yielded best repeatability in the entire cervical cord. In the upper part of the cervical cord, use of brain MRI scans entailed only a minor loss of CSA repeatability compared to SC MRI. Due to systematic differences between scanners and the CSA quantification software, both should be kept constant within a study. The MRI dataset of this study is available publicly to test new analysis approaches.

19.
Lancet Neurol ; 20(8): 653-670, 2021 08.
Article in English | MEDLINE | ID: mdl-34139157

ABSTRACT

The 2015 Magnetic Resonance Imaging in Multiple Sclerosis and 2016 Consortium of Multiple Sclerosis Centres guidelines on the use of MRI in diagnosis and monitoring of multiple sclerosis made an important step towards appropriate use of MRI in routine clinical practice. Since their promulgation, there have been substantial relevant advances in knowledge, including the 2017 revisions of the McDonald diagnostic criteria, renewed safety concerns regarding intravenous gadolinium-based contrast agents, and the value of spinal cord MRI for diagnostic, prognostic, and monitoring purposes. These developments suggest a changing role of MRI for the management of patients with multiple sclerosis. This 2021 revision of the previous guidelines on MRI use for patients with multiple sclerosis merges recommendations from the Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative, and translates research findings into clinical practice to improve the use of MRI for diagnosis, prognosis, and monitoring of individuals with multiple sclerosis. We recommend changes in MRI acquisition protocols, such as emphasising the value of three dimensional-fluid-attenuated inversion recovery as the core brain pulse sequence to improve diagnostic accuracy and ability to identify new lesions to monitor treatment effectiveness, and we provide recommendations for the judicious use of gadolinium-based contrast agents for specific clinical purposes. Additionally, we extend the recommendations to the use of MRI in patients with multiple sclerosis in childhood, during pregnancy, and in the post-partum period. Finally, we discuss promising MRI approaches that might deserve introduction into clinical practice in the near future.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Adolescent , Adult , Aged , Child , Consensus , Contrast Media , Disease Progression , Female , Gadolinium , Humans , Magnetic Resonance Imaging/standards , Male , Middle Aged , Monitoring, Physiologic , Multiple Sclerosis/diagnosis , Multiple Sclerosis/therapy , Pediatrics , Pregnancy , Prognosis , Reproducibility of Results , Treatment Outcome , Young Adult
20.
Brain ; 144(5): 1296-1311, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33970206

ABSTRACT

Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Neuroimaging/methods , Spinal Cord/diagnostic imaging , Brain/pathology , Humans , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...