Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36771590

ABSTRACT

The Rosa genus is characterized by great variability and, consequently, they easily hybridize. The petals of R. pendulina, R. spinosissima and their hybrid Rosa pendulina × spinosissima, collected in western Slovenia, were included in the research. We performed morphometric analysis using keys to determine roses and genetic analysis to determine the genome size. The phenolic compound content in petals of all rose flowers was measured by liquid chromatography and mass spectrometry (HPLC-MS). Using flow cytometry, we could confirm the native hybridization process due to the amount of 2C DNA. The value of R. pendulina was 1.71 pg, of R. spinosissima 1.60 pg and of the hybrid 1.62 pg. The value for the hybrid was close to values measured for parent plants and, at the same time, those values of parent plants significantly differed from each other. Our results showed that the content of phenolic compounds in petals decreased after crossing. We found that the highest total phenolic content (178.9 g/kg FW) was measured in R. spinossisima, the lowest content was analyzed for the hybrid (84.36 g/kg FW) and the content for R. pendulina was between these two values (110.58 g/kg FW). The content of flavanols and flavonols was lowest in the hybrid petals, whereas the content of anthocyanins was highest in the hybrid petals.

2.
Ecol Evol ; 10(5): 2638-2649, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32185008

ABSTRACT

Species occupying habitats subjected to frequent natural and/or anthropogenic changes are a challenge for conservation management. We studied one such species, Viola uliginosa, an endangered perennial wetland species typically inhabiting sporadically flooded meadows alongside rivers/lakes. In order to estimate genomic diversity, population structure, and history, we sampled five sites in Finland, three in Estonia, and one each in Slovenia, Belarus, and Poland using genomic SNP data with double-digest restriction site-associated DNA sequencing (ddRAD-seq). We found monophyletic populations, high levels of inbreeding (mean population F SNP = 0.407-0.945), low effective population sizes (N e = 0.8-50.9), indications of past demographic expansion, and rare long-distance dispersal. Our results are important in implementing conservation strategies for V. uliginosa, which should include founding of seed banks, ex situ cultivations, and reintroductions with individuals of proper origin, combined with continuous population monitoring and habitat management.

3.
Glob Chang Biol ; 25(8): 2714-2726, 2019 08.
Article in English | MEDLINE | ID: mdl-31002208

ABSTRACT

Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change-driven intracontinental range-expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range-expanding and four congeneric native species along a 2,000 km latitudinal transect from South-Eastern to North-Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range-expanding plant species than in congeneric natives and that in their new range, range-expanding plant species accumulate fewest root-feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range-expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range-expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root-feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range-expanding and native plant species and that some range-expanding plant species may become released from root-feeding nematodes in the new range.


Subject(s)
Nematoda , Soil , Animals , Europe , Plants , Rhizosphere
4.
Nat Ecol Evol ; 3(4): 604-611, 2019 04.
Article in English | MEDLINE | ID: mdl-30911144

ABSTRACT

Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the movement of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new range, the relatedness between range-expanding plant species and native flora can influence plant-microorganism interactions. Here we use a latitudinal gradient spanning 3,000 km across Europe to examine bacterial and fungal communities in the rhizosphere and surrounding soils of range-expanding plant species. We selected range-expanding plants with and without congeneric native species in the new range and, as a control, the congeneric native species, totalling 382 plant individuals collected across Europe. In general, the status of a plant as a range-expanding plant was a weak predictor of the composition of bacterial and fungal communities. However, microbial communities of range-expanding plant species became more similar to each other further from their original range. Range-expanding plants that were unrelated to the native community also experienced a decrease in the ratio of plant pathogens to symbionts, giving weak support to the enemy release hypothesis. Even at a continental scale, the effects of plant range expansion on the belowground microbiome are detectable, although changes to specific taxa remain difficult to decipher.


Subject(s)
Microbiota , Plants/microbiology , Rhizosphere , Bacteria/genetics , Bacteria/isolation & purification , Climate Change , DNA, Bacterial/analysis , DNA, Fungal/analysis , Europe , Fungi/genetics , Fungi/isolation & purification , Soil Microbiology
5.
Front Microbiol ; 8: 1645, 2017.
Article in English | MEDLINE | ID: mdl-28900420

ABSTRACT

Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic microbes. We collected seeds and soil of the range-expanding Centaurea stoebe and the congeneric Centaurea jacea from three populations growing in Slovenia (native range of both Centaurea species) and the Netherlands (expanded range of C. stoebe, native range of C. jacea). We isolated and identified endophytic fungi directly from seeds, as well as from roots of the plants grown in Slovenian, Dutch or sterilized soil to compare fungal endophyte composition. Furthermore, we investigated whether C. stoebe hosts a reduced community composition of endophytes in the expanded range due to release from plant-species specific fungi while endophyte communities in C. jacea in both ranges are similar. We cultivated 46 unique and phylogenetically diverse endophytes. A majority of the seed endophytes resembled potential pathogens, while most root endophytes were not likely to be pathogenic. Only one endophyte was found in both roots and seeds, but was isolated from different plant species. Unexpectedly, seed endophyte diversity of southern C. stoebe populations was lower than of populations from the north, while the seed endophyte community composition of northern C. stoebe populations was significantly different southern C. stoebe as well as northern and southern C. jacea populations. Root endophyte diversity was considerably lower in C. stoebe than in C. jacea independent of plant and soil origin, but this difference disappeared when plants were grown in sterile soils. We conclude that the community composition of fungal endophytes not only differs between related plant species but also between populations of plants that expand their range compared to their native habitat. Our results suggest that fungal endophytes of two Centaurea species are not able to systemically infect plants. We highlight that endophytes remain poorly studied and further work should investigate the functional importance of endophytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...