Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
JOR Spine ; 7(2): e1322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666074

ABSTRACT

Background: Cadaveric intervertebral discs are often studied for a variety of research questions, and outcomes are interpreted in the in vivo context. Unfortunately, the cadaveric disc does not inherently represent the LIVE condition, such that the disc structure (geometry), composition (T2 relaxation time), and mechanical function (opening pressure, OP) measured in the cadaver do not necessarily represent the in vivo disc. Methods: We conducted serial evaluations in the Yucatan minipig of disc geometry, T2 relaxation time, and OP to quantify the changes that occur with progressive dissection and used axial loading to restore the in vivo condition. Results: We found no difference in any parameter from LIVE to TORSO; thus, within 2 h of sacrifice, the TORSO disc can represent the LIVE condition. With serial dissection and sample preparation the disc height increased (SEGMENT height 18% higher than TORSO), OP decreased (POTTED was 67% lower than TORSO), and T2 time was unchanged. With axial loading, an imposed stress of 0.20-0.33 MPa returned the disc to in vivo, LIVE disc geometry and OP, although T2 time was decreased. There was a linear correlation between applied stress and OP, and this was conserved across multiple studies and species. Conclusion: To restore the LIVE disc state in human studies or other animal models, we recommend measuring the OP/stress relationship and using this relationship to select the applied stress necessary to recover the in vivo condition.

2.
JOR Spine ; 6(1): e1243, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994458

ABSTRACT

Background: Intervertebral disc degeneration is often implicated in low back pain; however, discs with structural degeneration often do not cause pain. It may be that disc mechanics can provide better diagnosis and identification of the pain source. In cadaveric testing, the degenerated disc has altered mechanics, but in vivo, disc mechanics remain unknown. To measure in vivo disc mechanics, noninvasive methods must be developed to apply and measure physiological deformations. Aim: Thus, this study aimed to develop methods to measure disc mechanical function via noninvasive MRI during flexion and extension and after diurnal loading in a young population. This data will serve as baseline disc mechanics to later compare across ages and in patients. Materials & Methods: To accomplish this, subjects were imaged in the morning in a reference supine position, in flexion, in extension, and at the end of the day in a supine position. Disc deformations and vertebral motions were used to quantify disc axial strain, changes in wedge angle, and anterior-posterior (A-P) shear displacement. T2 weighted MRI was also used to evaluate disc degeneration via Pfirrmann grading and T2 time. All measures were then tested for effect of sex and disc level. Results: We found that flexion and extension caused level-dependent strains in the anterior and posterior of the disc, changes in wedge angle, and A-P shear displacements. Flexion had higher magnitude changes overall. Diurnal loading did not cause level-dependent strains but did cause small level-dependent changes in wedge angle and A-P shear displacements. Discussion: Correlations between disc degeneration and mechanics were largest in flexion, likely due to the smaller contribution of the facet joints in this condition. Conclusion: In summary, this study established methods to measure in vivo disc mechanical function via noninvasive MRI and established a baseline in a young population that may be compared to older subjects and clinical disorders in the future.

3.
JOR Spine ; 4(2): e1145, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34337333

ABSTRACT

Finite element models of the intervertebral disc are used to address research questions that cannot be tested through typical experimentation. A disc model requires complex geometry and tissue properties to be accurately defined to mimic the physiological disc. The physiological disc possesses residual strain in the annulus fibrosus (AF) due to osmotic swelling and due to inherently pre-strained fibers. We developed a disc model with residual contributions due to swelling-only, and a multigeneration model with residual contributions due to both swelling and AF fiber pre-strain and validated it against organ-scale uniaxial, quasi-static and multiaxial, dynamic mechanical tests. In addition, we demonstrated the models' ability to mimic the opening angle observed following radial incision of bovine discs. Both models were validated against organ-scale experimental data. While the swelling only model responses were within the experimental 95% confidence interval, the multigeneration model offered outcomes closer to the experimental mean and had a bovine model opening angle within one SD of the experimental mean. The better outcomes for the multigeneration model, which allowed for the inclusion of inherently pre-strained fibers in AF, is likely due to its uniform fiber contribution throughout the AF. We conclude that the residual contribution of pre-strained fibers in the AF should be included to best simulate the physiological disc and its behaviors.

4.
JOR Spine ; 3(3): e1102, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33015575

ABSTRACT

Noninvasive assessments of intervertebral disc health and degeneration are critical for addressing disc degeneration and low back pain. Magnetic resonance imaging (MRI) is exceptionally sensitive to tissue with high water content, and measurement of the MR transverse relaxation time, T 2, has been applied as a quantitative, continuous, and objective measure of disc degeneration that is linked to the water and matrix composition of the disc. However, T 2 measurement is susceptible to inaccuracies due to Rician noise, T 1 contamination, and stimulated echo effects. These error generators can all be controlled for with proper data collection and fitting methods. The objective of this study was to identify sequence parameters to appropriately acquire MR data and to establish curve fitting methods to accurately calculate disc T 2 in the presence of noise by correcting for Rician noise. To do so, we compared T 2 calculated from the typical monoexponential (MONO) fits and noise corrected exponential (NCEXP) fits. We examined how the selected sequence parameters altered the calculated T 2 in silico and in vivo. Typical MONO fits were frequently poor due to Rician noise, and NCEXP fits were more likely to provide accurate T 2 calculations. NCEXP is particularly less biased and less uncertain at low SNR. This study showed that the NCEXP using sequences with data from 20 echoes out to echo times of ~300 ms is the best method for calculating T 2 of discs. By acquiring signal data out to longer echo times and accounting for Rician noise, the curve fitting is more robust in calculating T 2 despite the noise in the data. This is particularly important when considering degenerate discs or AF tissue because the SNR of these regions is lower.

5.
JOR Spine ; 2(1): e1047, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31463461

ABSTRACT

The kinematics of the intervertebral disc are defined by six degrees of freedom (DOF): three translations (Tz: axial compression, Tx: lateral shear, and Ty: anterior-posterior shear) and three rotations (Rz: torsion, Rx: flexion-extension, and Ry: lateral bending). There is some evidence that the six DOFs are mechanically coupled, such that loading in one DOF affects the mechanics of the other five "off-axis" DOFs, however, most studies have not controlled and/or measured all six DOFs simultaneously. Additionally, the relationships between disc geometry and disc mechanics are important for evaluation of data from different sized donor and patient discs. The objectives of this study were to quantify the mechanical behavior of the intervertebral disc in all six degrees of freedom (DOFs), measure the coupling between the applied motion in each DOF with the resulting off-axis motions, and test the hypothesis that disc geometry influences these mechanical behaviors. All off-axis displacements and rotations were significantly correlated with the applied DOF and were of similar magnitude as physiologically relevant motion, confirming that off-axis coupling is an important mechanical response. Interestingly, there were pairs of DOFs that were especially strongly coupled: lateral shear (Tx) and lateral bending (Ry), anterior-posterior shear (Ty) and flexion-extension (Rx), and compression (Tz) and torsion (Rz). Large off-axis shears may contribute to injury risk in bending and flexion. In addition, the disc responded to shear (Tx, Ty) and rotational loading (Rx, Ry, and Rz) by increasing in disc height in order to maintain the applied compressive load. Quantifying these mechanical behaviors across all six DOF are critical for designing and testing disc therapies, such as implants and tissue engineered constructs, and also for validating finite element models.

6.
J Biomech Eng ; 141(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31141601

ABSTRACT

Nucleotomy is a common surgical procedure and is also performed in ex vivo mechanical testing to model decreased nucleus pulposus (NP) pressurization that occurs with degeneration. Here, we implement novel and noninvasive methods using magnetic resonance imaging (MRI) to study internal 3D annulus fibrosus (AF) deformations after partial nucleotomy and during axial compression by evaluating changes in internal AF deformation at reference loads (50 N) and physiological compressive loads (∼10% strain). One particular advantage of this methodology is that the full 3D disc deformation state, inclusive of both in-plane and out-of-plane deformations, can be quantified through the use of a high-resolution volumetric MR scan sequence and advanced image registration. Intact grade II L3-L4 cadaveric human discs before and after nucleotomy were subjected to identical mechanical testing and imaging protocols. Internal disc deformation fields were calculated by registering MR images captured in each loading state (reference and compressed) and each condition (intact and nucleotomy). Comparisons were drawn between the resulting three deformation states (intact at compressed load, nucleotomy at reference load, nucleotomy at compressed load) with regard to the magnitude of internal strain and direction of internal displacements. Under compressed load, internal AF axial strains averaged -18.5% when intact and -22.5% after nucleotomy. Deformation orientations were significantly altered by nucleotomy and load magnitude. For example, deformations of intact discs oriented in-plane, whereas deformations after nucleotomy oriented axially. For intact discs, in-plane components of displacements under compressive loads oriented radially outward and circumferentially. After nucleotomy, in-plane displacements were oriented radially inward under reference load and were not significantly different from the intact state at compressed loads. Re-establishment of outward displacements after nucleotomy indicates increased axial loading restores the characteristics of internal pressurization. Results may have implications for the recurrence of pain, design of novel therapeutics, or progression of disc degeneration.

7.
J Orthop Res ; 34(8): 1410-7, 2016 08.
Article in English | MEDLINE | ID: mdl-27232974

ABSTRACT

Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3-1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1410-1417, 2016.


Subject(s)
Intervertebral Disc Degeneration/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging , Adult , Age Factors , Aged , Humans , Male , Middle Aged
8.
J Biomech ; 49(4): 550-7, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26874969

ABSTRACT

Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics.


Subject(s)
Cartilage/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Mechanical Phenomena , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Intervertebral Disc/physiopathology , Intervertebral Disc Degeneration/physiopathology , Male , Middle Aged , Permeability , Stress, Mechanical
9.
MAGMA ; 29(4): 711-22, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26755061

ABSTRACT

OBJECTIVE: Here we develop a three-dimensional analytic model for MR image contrast of collagen lamellae in the annulus fibrosus of the intervertebral disc of the spine, based on the dependence of the MRI signal on collagen fiber orientation. MATERIALS AND METHODS: High-resolution MRI scans were performed at 1.5 and 7 T on intact whole disc specimens from ovine, bovine, and human spines. An analytic model that approximates the three-dimensional curvature of the disc lamellae was developed to explain inter-lamellar contrast and intensity variations in the annulus. The model is based on the known anisotropic dipolar relaxation of water in tissues with ordered collagen. RESULTS: Simulated MRI data were generated that reproduced many features of the actual MRI data. The calculated inter-lamellar image contrast demonstrated a strong dependence on the collagen fiber angle and on the circumferential location within the annulus. CONCLUSION: This analytic model may be useful for interpreting MR images of the disc and for predicting experimental conditions that will optimize MR image contrast in the annulus fibrosus.


Subject(s)
Annulus Fibrosus/diagnostic imaging , Contrast Media/chemistry , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging , Animals , Anisotropy , Cattle , Collagen/chemistry , Computer Simulation , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods , Sheep
10.
J Orthop Res ; 34(7): 1264-73, 2016 07.
Article in English | MEDLINE | ID: mdl-26694516

ABSTRACT

Tissue strain is an important indicator of mechanical function, but is difficult to noninvasively measure in the intervertebral disc. The objective of this study was to generate a disc strain template, a 3D average of disc strain, of a group of human L4-L5 discs loaded in axial compression. To do so, magnetic resonance images of uncompressed discs were used to create an average disc shape. Next, the strain tensors were calculated pixel-wise by using a previously developed registration algorithm. Individual disc strain tensor components were then transformed to the template space and averaged to create the disc strain template. The strain template reduced individual variability while highlighting group trends. For example, higher axial and circumferential strains were present in the lateral and posterolateral regions of the disc, which may lead to annular tears. This quantification of group-level trends in local 3D strain is a significant step forward in the study of disc biomechanics. These trends were compared to a finite element model that had been previously validated against the disc-level mechanical response. Depending on the strain component, 81-99% of the regions within the finite element model had calculated strains within one standard deviation of the template strain results. The template creation technique provides a new measurement technique useful for a wide range of studies, including more complex loading conditions, the effect of disc pathologies and degeneration, damage mechanisms, and design and evaluation of treatments. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1264-1273, 2016.


Subject(s)
Intervertebral Disc/physiology , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Intervertebral Disc/diagnostic imaging , Lumbar Vertebrae , Magnetic Resonance Imaging , Weight-Bearing
11.
J Biomech Eng ; 136(11)2014 Nov.
Article in English | MEDLINE | ID: mdl-25109533

ABSTRACT

Study objectives were to develop, validate, and apply a method to measure three-dimensional (3D) internal strains in intact human discs under axial compression. A custom-built loading device applied compression and permitted load-relaxation outside of the magnet while also maintaining compression and hydration during imaging. Strain was measured through registration of 300 µm isotropic resolution images. Excellent registration accuracy was achieved, with 94% and 65% overlap of disc volume and lamellae compared to manual segmentation, and an average Hausdorff, a measure of distance error, of 0.03 and 0.12 mm for disc volume and lamellae boundaries, respectively. Strain maps enabled qualitative visualization and quantitative regional annulus fibrosus (AF) strain analysis. Axial and circumferential strains were highest in the lateral AF and lowest in the anterior and posterior AF. Radial strains were lowest in the lateral AF, but highly variable. Overall, this study provided new methods that will be valuable in the design and evaluation surgical procedures and therapeutic interventions.


Subject(s)
Compressive Strength , Imaging, Three-Dimensional , Intervertebral Disc , Magnetic Resonance Imaging , Materials Testing/methods , Stress, Mechanical , Humans , Lumbar Vertebrae , Materials Testing/instrumentation , Middle Aged , Reproducibility of Results
12.
J Biomech ; 47(11): 2540-6, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24998992

ABSTRACT

Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios.


Subject(s)
Compressive Strength/physiology , Intervertebral Disc/physiology , Weight-Bearing/physiology , Algorithms , Anisotropy , Cartilage/physiology , Elasticity , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Lumbar Vertebrae/physiology , Magnetic Resonance Imaging , Models, Anatomic , Models, Biological , Stress, Mechanical , Viscosity
13.
J Biomech ; 47(11): 2633-40, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24957922

ABSTRACT

The first objective of this study was to determine the effects of physiological cyclic loading followed by unloaded recovery on the mechanical response of human intervertebral discs. The second objective was to examine how nucleotomy alters the disc's mechanical response to cyclic loading. To complete these objectives, 15 human L5-S1 discs were tested while intact and subsequent to nucleotomy. The testing consisted of 10,000 cycles of physiological compressive loads followed by unloaded hydrated recovery. Cyclic loading increased compression modulus (3%) and strain (33%), decreased neutral zone modulus (52%), and increased neutral zone strain (31%). Degeneration was not correlated with the effect of cyclic loading in intact discs, but was correlated with cyclic loading effects after nucleotomy, with more degenerate samples experiencing greater increases in both compressive and neutral zone strain following cyclic loading. Partial removal of the nucleus pulposus decreased the compression and neutral zone modulus while increasing strain. These changes correspond to hypermobility, which will alter overall spinal mechanics and may impact low back pain via altered motion throughout the spinal column. Nucleotomy also reduced the effects of cyclic loading on mechanical properties, likely due to altered fluid flow, which may impact cellular mechanotransduction and transport of disc nutrients and waste. Degeneration was not correlated with the acute changes of nucleotomy. Results of this study provide an ideal protocol and control data for evaluating the effectiveness of a mechanically-based disc degeneration treatment, such as a nucleus replacement.


Subject(s)
Intervertebral Disc/physiology , Lumbar Vertebrae/physiology , Adult , Aged , Compressive Strength , Humans , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Displacement , Low Back Pain , Mechanotransduction, Cellular , Middle Aged , Pressure , Stress, Mechanical , Young Adult
14.
J Biomech ; 47(10): 2452-9, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24792581

ABSTRACT

Intervertebral disc mechanics are affected by both disc shape and disc degeneration, which in turn each affect the other; disc mechanics additionally have a role in the etiology of disc degeneration. Finite element analysis (FEA) is a favored tool to investigate these relationships, but limited data for intervertebral disc 3D shape has forced the use of simplified or single-subject geometries, with the effect of inter-individual shape variation investigated only in specialized studies. Similarly, most data on disc shape variation with degeneration is based on 2D mid-sagittal images, which incompletely define 3D shape changes. Therefore, the objective of this study was to quantify inter-individual disc shape variation in 3D, classify this variation into independently-occurring modes using a statistical shape model, and identify correlations between disc shape and degeneration. Three-dimensional disc shapes were obtained from MRI of 13 human male cadaver L3L4 discs. An average disc shape and four major modes of shape variation (representing 90% of the variance) were identified. The first mode represented disc axial area and was significantly correlated to degeneration (R(2)=0.44), indicating larger axial area in degenerate discs. Disc height variation occurred in three distinct modes, each also involving non-height variation. The statistical shape model provides an average L3L4 disc shape for FEA that is fully defined in 3D, and makes it convenient to generate a set of shapes with which to represent aggregate inter-individual variation. Degeneration grade-specific shapes can also be generated. To facilitate application, the model is included in this paper׳s supplemental content.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Displacement/physiopathology , Intervertebral Disc/physiopathology , Lumbar Vertebrae/physiopathology , Aged , Aged, 80 and over , Cadaver , Computer Simulation , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Models, Statistical
15.
Eur Spine J ; 22(8): 1820-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23674162

ABSTRACT

PURPOSE: The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence. METHODS: MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP. RESULTS: CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc. CONCLUSIONS: This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.


Subject(s)
Hyaline Cartilage/anatomy & histology , Intervertebral Disc/anatomy & histology , Lumbar Vertebrae/anatomy & histology , Magnetic Resonance Imaging , Adult , Aged , Cadaver , Female , Humans , Image Processing, Computer-Assisted , Intervertebral Disc Degeneration/pathology , Male , Middle Aged
16.
J Biomech Eng ; 135(2): 021004, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23445049

ABSTRACT

Planar biaxial tension remains a critical loading modality for fibrous soft tissue and is widely used to characterize tissue mechanical response, evaluate treatments, develop constitutive formulas, and obtain material properties for use in finite element studies. Although the application of tension on all edges of the test specimen represents the in situ environment, there remains a need to address the interpretation of experimental results. Unlike uniaxial tension, in biaxial tension the applied forces at the loading clamps do not transmit fully to the region of interest (ROI), which may lead to improper material characterization if not accounted for. In this study, we reviewed the tensile biaxial literature over the last ten years, noting experimental and analysis challenges. In response to these challenges, we used finite element simulations to quantify load transmission from the clamps to the ROI in biaxial tension and to formulate a correction factor that can be used to determine ROI stresses. Additionally, the impact of sample geometry, material anisotropy, and tissue orientation on the correction factor were determined. Large stress concentrations were evident in both square and cruciform geometries and for all levels of anisotropy. In general, stress concentrations were greater for the square geometry than the cruciform geometry. For both square and cruciform geometries, materials with fibers aligned parallel to the loading axes reduced stress concentrations compared to the isotropic tissue, resulting in more of the applied load being transferred to the ROI. In contrast, fiber-reinforced specimens oriented such that the fibers aligned at an angle to the loading axes produced very large stress concentrations across the clamps and shielding in the ROI. A correction factor technique was introduced that can be used to calculate the stresses in the ROI from the measured experimental loads at the clamps. Application of a correction factor to experimental biaxial results may lead to more accurate representation of the mechanical response of fibrous soft tissue.


Subject(s)
Finite Element Analysis , Materials Testing , Stress, Mechanical , Anisotropy
17.
Spine (Phila Pa 1976) ; 37(15): E900-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22333953

ABSTRACT

STUDY DESIGN: Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. OBJECTIVE: To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. SUMMARY OF BACKGROUND DATA: There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. METHODS: Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. RESULTS: Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. CONCLUSION: Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.


Subject(s)
Collagen/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/physiology , Lumbar Vertebrae , Adult , Animals , Biomechanical Phenomena , Biomedical Research/methods , Cattle , Compressive Strength , Female , Goats , Humans , Male , Mice , Mice, Inbred C57BL , Models, Animal , Papio , Rabbits , Rats , Rats, Sprague-Dawley , Sheep , Species Specificity , Swine , Torsion, Mechanical , Young Adult
18.
Bone ; 50(3): 771-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22197996

ABSTRACT

This review challenges an earlier view that the intervertebral joint could not be classified as a diarthrodial joint and should remain as an amphiarthrosis. However, a careful analysis of the relevant literature and in light of more recent studies, it is clear that while some differences exist between the spinal articulation and the generic synovial joint, there are clear structural, functional and developmental similarities between the joints that in sum outweigh the differences. Further, since the intervertebral motion segment displays movement in three dimensions and the whole spine itself provides integrated rotatory movements, it is proposed that it should be classified not as an amphiarthrose, "a slightly moveable joint" but as a complex polyaxial joint. Hopefully, reclassification will encourage further analysis of the structure and function of the two types of overlapping joints and provide common new insights into diseases that afflict the many joints of the human skeleton.


Subject(s)
Intervertebral Disc/physiology , Joints/physiology , Range of Motion, Articular/physiology , Spine/physiology , Bursa, Synovial/physiology , Humans , Zygapophyseal Joint/physiology
19.
J Mech Behav Biomed Mater ; 4(7): 933-42, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21783103

ABSTRACT

The intervertebral disc maintains a balance between externally applied loads and internal osmotic pressure. Fluid flow plays a key role in this process, causing fluctuations in disc hydration and height. The objectives of this study were to quantify and model the axial creep and recovery responses of nondegenerate and degenerate human lumbar discs. Two experiments were performed. First, a slow compressive ramp was applied to 2000 N, unloaded to allow recovery for up to 24 h, and re-applied. The linear-region stiffness and disc height were within 5% of the initial condition for recovery times greater than 8 h. In the second experiment, a 1000 N creep load was applied for four hours, unloaded recovery monitored for 24 h, and the creep load repeated. A viscoelastic model comprised of a "fast" and "slow" exponential response was used to describe the creep and recovery, where the fast response is associated with flow in the nucleus pulposus (NP) and endplate, while the slow response is associated with the annulus fibrosus (AF). The study demonstrated that recovery is 3-4X slower than loading. The fast response was correlated with degeneration, suggesting larger changes in the NP with degeneration compared to the AF. However, the fast response comprised only 10%-15% of the total equilibrium displacement, with the AF-dominated slow response comprising 40%-70%. Finally, the physiological loads and deformations and their associated long equilibrium times confirm that diurnal loading does not represent "equilibrium" in the disc, but that over time the disc is in steady-state.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc/physiopathology , Weight-Bearing , Biomechanical Phenomena , Humans , Lumbar Vertebrae/physiopathology , Rheology , Time Factors
20.
Spine (Phila Pa 1976) ; 36(21): 1765-71, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21394074

ABSTRACT

STUDY DESIGN: Biomechanics of human intervertebral discs before and after nucleotomy. OBJECTIVE: To noninvasively quantify the effect of nucleotomy on internal strains under axial compression in flexion, neutral, and extension positions, and to determine whether the change in strains depended on degeneration. SUMMARY OF BACKGROUND DATA: Herniation and nucleotomy may accelerate the progression of disc degeneration. Removal of nucleus pulposus (NP) tissue has resulted in altered disc mechanics in vitro, including a decrease in internal pressure and an increase in the deformations at physiologically relevant strains. We recently presented a technique to quantify internal disc strains using magnetic resonance imaging (MRI). METHODS: Degeneration was quantitatively assessed by the T1ρ relaxation time in the NP. Samples were prepared from human levels L3-L4 and/or L4-L5. A 1000-N compressive load was applied while in the magnetic resonance scanner. Nucleotomy was performed by removing 2 g of NP through the posterior-lateral annulus fibrosus (AF). The discs were rehydrated, reimaged, and retested. The analyzed parameters include axial deformation, AF radial bulge, and strains. RESULTS.: The axial deformation was more compressive after nucleotomy. In the neutral position, the axial deformation after nucleotomy correlated with degeneration (as quantified by T1ρ in the NP), with minimal alteration in nondegenerated discs. Nucleotomy altered the radial displacements and strains in the neutral position, such that the inner AF radial bulge decreased and the radial strains were more tensile in the lateral AF and less tensile in the posterior AF. In the bending loading positions the radial strains were not affected by nucleotomy. CONCLUSION: Nucleotomy alters the internal radial and axial AF strains in the neutral position, which may leave the AF vulnerable to damage and microfractures. In bending, the effects of nucleotomy were minimal, likely due to more of the applied load being directed over the AF. Some of the nucleotomy effects are modulated by degeneration, where the mechanical effect of nucleotomy was magnified in degenerated discs and may further induce mechanical damage and degeneration.


Subject(s)
Diskectomy , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Displacement/surgery , Intervertebral Disc/surgery , Lumbar Vertebrae/surgery , Adult , Aged , Biomechanical Phenomena , Diskectomy/adverse effects , Humans , Intervertebral Disc/pathology , Intervertebral Disc/physiopathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Displacement/pathology , Intervertebral Disc Displacement/physiopathology , Lumbar Vertebrae/pathology , Lumbar Vertebrae/physiopathology , Magnetic Resonance Imaging , Middle Aged , Stress, Mechanical , Tensile Strength , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...