Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 99(6): 3388-93, 2002 Mar 19.
Article in English | MEDLINE | ID: mdl-11904402

ABSTRACT

We present here algorithmic cooling (via polarization heat bath)-a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression, by using a set of rapidly thermal-relaxing bits. Such auxiliary bits could be implemented by using spins that rapidly get into thermal equilibrium with the environment, e.g., electron spins. Interestingly, the interaction with the environment, usually a most undesired interaction, is used here to our benefit, allowing a cooling mechanism. Cooling spins to a very low temperature without cooling the environment could lead to a breakthrough in NMR experiments, and our "spin-refrigerating" method suggests that this is possible. The scaling of NMR ensemble computers is currently one of the main obstacles to building larger-scale quantum computing devices, and our spin-refrigerating method suggests that this problem can be resolved.

SELECTION OF CITATIONS
SEARCH DETAIL
...