Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Prosthodont ; 37(1): 34-40, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37222543

ABSTRACT

PURPOSE: To compare the fit and fracture load of temporary fixed partial prostheses fabricated by means of a conventional direct technique, milling, or 3D printing. MATERIALS AND METHODS: A maxillary right first premolar and molar were prepared on a Frasaco cast, which was then duplicated 40 times. In total, 10 provisional three-unit fixed prostheses (Protemp 4, 3M) were made using the conventional technique with a putty mold. The 30 remaining casts were scanned to design a provisional restoration using CAD software. A total of 10 designs were milled (CEREC MC X5/shaded PMMA Disk, Dentsply Sirona), while the other 20 were 3D printed with one of the two 3D printers (Asiga UV MAX or Nextdent 5100, C&B, Nextdent). Internal and marginal fit were examined using the replica technique. Next, the restorations were cemented on their respective casts and loaded until fracture using a universal testing machine. The location and propagation of the fracture were also evaluated. RESULTS: 3D printing demonstrated the best internal fit. Nextdent (median internal fit: 132 µm) was significantly better compared to the milled (median internal fit: 185 µm; P = .006) and conventional restorations (median internal fit: 215 µm; P < .001), while the fit of Asiga (median internal fit: 152 µm) was only significantly better than the conventional restorations (P < .012). The lowest marginal discrepancy was found for the milled restorations (median marginal fit: 96 µm), but this was only significant when compared to the conventional group (median internal fit: 163 µm; P < .001). The conventional restorations demonstrated the lowest fracture load (median fracture load: 536 N), which was only significant when compared to Asiga (median fracture load: 892 N; P = .003). CONCLUSIONS: Within the present in vitro study's limitations, CAD/CAM demonstrated superior fit and strength compared to the conventional technique.


Subject(s)
Dental Implants , Dental Prosthesis Design , Dental Prosthesis Design/methods , Dental Marginal Adaptation , Computer-Aided Design , Printing, Three-Dimensional , Crowns
2.
Int J Oral Maxillofac Implants ; 37(3): 479-484, 2022.
Article in English | MEDLINE | ID: mdl-35727238

ABSTRACT

PURPOSE: The increasing popularity of desktop 3D printers makes guided surgery more accessible. The aim of this in vitro study was to evaluate the accuracy of single-tooth guided implant surgery by means of a 3D-printed tooth-supported guide. MATERIALS AND METHODS: Fifteen implants were virtually planned to replace a missing first mandibular molar, using planning software for guided implant surgery (Exoplan, Exocad). A tooth-supported guide was designed and manufactured using a desktop 3D printer (Asiga MAX UV). The implants were placed fully guided in resin casts, and a digital impression was taken to register their position. This scan was compared with the virtual implant position in the planning software, and the internal fit of the guides was evaluated using metrology software. One planning was executed six times for measuring precision. RESULTS: For trueness, the mean angular deviation was 2.63 degrees (SD: 1.69 degrees; range: 0.38 to 5.99 degrees), the mean coronal deviation was 0.52 mm (SD: 0.25; range: 0.09 mm to 1.07 mm), and the mean apical deviation was 0.90 mm (SD: 0.47; range: 0.14 to 1.74 mm). The absolute apical mean deviation in the buccolingual direction (x-axis) was 0.70 mm (SD: 0.42, 0.12 to 1.65 mm; P < .001); in the mesiodistal direction (y-axis), it was 0.34 mm (SD: 0.26; range: 0.01 to 0.80 mm; P = .650); and in the vertical direction (z-axis), it was 0.32 mm (SD: 0.27; range: 0.02 to 1.00 mm; P = .010). The mean internal fit of the guides was 79.5 µm (SD: 19.6 µm; range: 51 to 118 µm). CONCLUSION: Desktop 3D-printed tooth-supported guides demonstrate an acceptable fit and acceptable level of accuracy for single implant placement.


Subject(s)
Dental Implants , Surgery, Computer-Assisted , Computer-Aided Design , Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Imaging, Three-Dimensional , Printing, Three-Dimensional
3.
J Clin Med ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160045

ABSTRACT

The aim of this study was to evaluate the accuracy of full-arch digital impressions when compared to conventional impressions, when performed on the abutment or implant level. METHODS: One resin cast with six implants and another cast with six abutments were scanned with Primescan v5.1 (PS51), Primescan v5.2 (PS52), Trios 3 (T3), and Trios 4 (T4). Additionally, conventional impressions (A) were made, poured in gypsum, and digitized using a lab scanner (IScan D104i). A coordinate machine (Atos, GOM, Braunschweig, Germany) was used to generate the reference scan of both casts. For all scans, the position of the implants was calculated and matched with the reference scan. Angular and coronal measurements per implant were considered for trueness and precision. RESULTS: For the implant-level model, PS52 performed significantly better in terms of trueness and precision compared to all other impressions, except for the angular trueness of A (p = 0.072) and the coronal trueness of PS51 (p = 1.000). For the abutment-level model, PS52 also performed significantly better than all other impressions, except for the coronal trueness and precision of A (p = 1.000). CONCLUSIONS: Digital impressions for full-arch implant supported prostheses can be as accurate as conventional impressions, depending on the intra-oral scanner and software. Overall, abutment level impressions were more accurate compared to implant level impressions.

4.
J Clin Med ; 10(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498516

ABSTRACT

PURPOSE: The aim of this in vitro study is to evaluate the accuracy of implant position using mucosal supported surgical guides, produced by a desktop 3D printer. METHODS: Ninety implants (Bone Level Roxolid, 4.1 mm × 10 mm, Straumann, Villerat, Switzerland) were placed in fifteen mandibular casts (Bonemodels, Castellón de la Plana, Spain). A mucosa-supported guide was designed and printed for each of the fifteen casts. After placement of the implants, the location was assessed by scanning the cast and scan bodies with an intra-oral scanner (Primescan®, Dentsply Sirona, York, PA, USA). Two comparisons were performed: one with the mucosa as a reference, and one where only the implants were aligned. Angular, coronal and apical deviations were measured. RESULTS: The mean implant angular deviation for tissue and implant alignment were 3.25° (SD 1.69°) and 2.39° (SD 1.42°) respectively, the coronal deviation 0.82 mm (SD 0.43 mm) and 0.45 mm (SD 0.31 mm) and the apical deviation 0.99 mm (SD 0.45 mm) and 0.71 mm (SD 0.43 mm). All three variables were significantly different between the tissue and implant alignment (p < 0.001). CONCLUSION: Based on the results of this study, we conclude that guided implant surgery using desktop 3D printed mucosa-supported guides has a clinically acceptable level of accuracy. The resilience of the mucosa has a negative effect on the guide stability and increases the deviation in implant position.

SELECTION OF CITATIONS
SEARCH DETAIL
...