Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 174(5): 1188-1199.e14, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057118

ABSTRACT

In stationary-phase Escherichia coli, Dps (DNA-binding protein from starved cells) is the most abundant protein component of the nucleoid. Dps compacts DNA into a dense complex and protects it from damage. Dps has also been proposed to act as a global regulator of transcription. Here, we directly examine the impact of Dps-induced compaction of DNA on the activity of RNA polymerase (RNAP). Strikingly, deleting the dps gene decompacted the nucleoid but did not significantly alter the transcriptome and only mildly altered the proteome during stationary phase. Complementary in vitro assays demonstrated that Dps blocks restriction endonucleases but not RNAP from binding DNA. Single-molecule assays demonstrated that Dps dynamically condenses DNA around elongating RNAP without impeding its progress. We conclude that Dps forms a dynamic structure that excludes some DNA-binding proteins yet allows RNAP free access to the buried genes, a behavior characteristic of phase-separated organelles.


Subject(s)
DNA, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacterial Outer Membrane Proteins/metabolism , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Holoenzymes/metabolism , Microscopy, Fluorescence , Polystyrenes/chemistry , Proteome , Sequence Analysis, RNA , Stress, Mechanical , Transcriptome
2.
Proc Natl Acad Sci U S A ; 113(18): 4982-7, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27091987

ABSTRACT

In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states.


Subject(s)
Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , DNA-Binding Proteins/chemistry , Models, Theoretical , Hydrogen-Ion Concentration , Magnesium/chemistry , Salts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...