Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30004872

ABSTRACT

Three-dimensional contrast-enhanced ultrasound (CEUS) imaging presents a clear advantage over its 2-D counterpart in detecting and characterizing suspicious lesions as it properly surveys the inherent heterogeneity of tumors. However, 3-D CEUS is also slow compared to 2-D CEUS and tends to undersample the microbubble wash-in. This makes it difficult to resolve the feeding vessels, an important oncogenic marker, from the background perfusion cloud. Contrast-enhanced Doppler is helpful in isolating this conduit flow, but requires too many pulses in conventional line-by-line beamforming design. Recent breakthroughs in plane-wave imaging have greatly accelerated the volumetric imaging frame rate, but volumetric Doppler angiography still remains challenging when considering real-time limitations on the Doppler ensemble length. In this work, we demonstrate the feasibility of volumetric CEUS angiography subjected to real-time imaging constraints. Namely, we show how principal curvature detection can significantly improve 3-D rendering of relatively noisy ultrasound angiograms without degrading the spatial resolution while subjected to a reasonable Doppler ensemble size. Singular value decomposition is also shown to be capable of identifying the quasi-stationary capillary perfusion.


Subject(s)
Angiography/methods , Imaging, Three-Dimensional/methods , Ultrasonography, Doppler/methods , Algorithms , Animals , Contrast Media/chemistry , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Microbubbles , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/diagnostic imaging , Rabbits , Signal Processing, Computer-Assisted
2.
Article in English | MEDLINE | ID: mdl-29993575

ABSTRACT

In this paper, we assess the importance of microbubble shell composition for contrast-enhanced imaging sequences commonly used on clinical scanners. While the gas core dynamics are primarily responsible for the nonlinear harmonic response of microbubbles at diagnostic pressures, it is now understood that the shell rheology plays a dominant role in the nonlinear response of microbubbles subjected to low acoustic pressures. Of particular interest here, acoustic pressures of tens of kilopascal can cause a reversible phase transition of the phospholipid coatings from a stiff elastic organized state to a less stiff disorganized buckled state. Such a transition from elastic to buckled shell induces a steep variation of the shell elasticity, which alters the microbubble acoustic scattering properties. We demonstrate in this paper that this mechanism plays a dominant role in contrast pulse sequences that modulate the amplitude of the insonifying pulse pressure. The contrast-to-tissue ratio (CTR) for amplitude modulation (AM), pulse inversion (PI), and amplitude modulation pulse inversion (AMPI) is measured in vitro for Definity, Sonazoid, both lipid-encapsulted microbubbles, and the albumin-coated Optison. It is found that pulse sequences using AM significantly enhanced the nonlinear response of all studied microbubbles compared to PI (up to 15 dB more) when low insonation pressures under 200 kPa were used. Further investigation reveals that the origin of the hyperechoicity is a small phase lag occurring between the echoes from the full-and half-amplitude driving pulses, and that the effect could be attributed to the shell softening dynamics of lipid and albumin coatings. We assess that this additional phase in microbubble ultrasound scattering can have a dominant role in the CTR achieved in contrast sequences using AM. We also show that the pressure dependent phase lag is a specific marker for microbubbles with no equivalent in tissue, which can be used to segment microbubbles from the tissue harmonics and significantly increase the CTR.


Subject(s)
Contrast Media/chemistry , Image Enhancement/methods , Microbubbles , Ultrasonography/methods , Algorithms , Animals , Kidney/diagnostic imaging , Phantoms, Imaging , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...