Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 12: e123405, 2024.
Article in English | MEDLINE | ID: mdl-38919771

ABSTRACT

Cinnamomumparthenoxylon is an endemic and endangered species with significant economic and ecological value in Vietnam. A better understanding of the genetic architecture of the species will be useful when planning management and conservation. We aimed to characterize the transcriptome of C.parthenoxylon, develop novel molecular markers, and assess the genetic variability of the species. First, transcriptome sequencing of five trees (C.parthenoxylon) based on root, leaf, and stem tissues was performed for functional annotation analysis and development of novel molecular markers. The transcriptomes of C.parthenoxylon were analyzed via an Illumina HiSeqTM 4000 sequencing system. A total of 27,363,199 bases were generated for C.parthenoxylon. De novo assembly indicated that a total of 160,435 unigenes were generated (average length = 548.954 bp). The 51,691 unigenes were compared against different databases, i.e. COG, GO, KEGG, KOG, Pfam, Swiss-Prot, and NR for functional annotation. Furthermore, a total of 12,849 EST-SSRs were identified. Of the 134 primer pairs, 54 were randomly selected for testing, with 15 successfully amplified across nine populations of C.parthenoxylon. We uncovered medium levels of genetic diversity (PIC = 0.52, Na = 3.29, Ne = 2.18, P = 94.07%, Ho = 0.56 and He = 0.47) within the studied populations. The molecular variance was 10% among populations and low genetic differentiation (Fst = 0.06) indicated low gene flow (Nm = 2.16). A reduction in the population size of C.parthenoxylon was detected using BOTTLENECK (VP population). The structure analysis suggested two optimal genetic clusters related to gene flow among the populations. Analysis of molecular variance (AMOVA) revealed higher genetic variation within populations (90%) than among populations (10%). The UPGMA approach and DAPC divided the nine populations into three main clusters. Our findings revealed a significant fraction of the transcriptome sequences and these newlydeveloped novel EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity and molecular marker-assisted selection in C.parthenoxylon. This study provides comprehensive genetic resources for the breeding and conservation of different varieties of C.parthenoxylon.

2.
Open Life Sci ; 17(1): 323-332, 2022.
Article in English | MEDLINE | ID: mdl-35480486

ABSTRACT

Cinnamomum balansae Lecomte (Lauraceae), an economically important forest tree, is distributed in the tropical forests of central and northern Vietnam, which has been threatened in recent decades due to the destruction of its habitat and over-exploitation. The genetic diversity and population structure of the species have not been fully evaluated. We used a set of 15 microsatellites to analyze 161 adult trees from 9 different populations, representing the geographical distribution of C. balansae. Ninety-two different alleles were identified. Here our results showed a low genetic diversity level with an average H o = 0.246 and H e = 0.262, and a high level of genetic differentiation (F ST = 0.601). The bottleneck tests indicated evidence of a reduction in the population size of the two populations (TC and CP). Additionally, all three clustering methods (Bayesian analysis, principal coordinate analysis, and Neighbor-joining tree) were identified in the two genetic groups. The Mantel test showed a significant positive correlation between genetic distance and geographic distance (R 2 = 0.7331). This study will provide a platform for the conservation of C. balansae both in ex-situ and in-situ plans.

3.
Phys Chem Chem Phys ; 24(10): 6053-6063, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35212351

ABSTRACT

A wide range of harmonics especially continuum harmonics is a prerequisite for attosecond pulse generation. One can use longer-wavelength lasers to push the cutoff to a higher order. However, this does not translate to the same amount of continuum range extension because multiple rescattering phenomena are also enhanced in the process, potentially affecting the lower end of the continuum harmonics. It is then important to understand exactly how multiple rescatterings affect the harmonic structure and their response to various laser parameters, which is the main theme of this paper. Particularly, by applying the synchrosqueezed time-frequency transform and classical electron trajectory analysis to the asymmetric molecule carbon monoxide (CO), we justify that the multiple rescatterings indeed influence the periodicity of the harmonic spectra and the stable periodicity is, in fact, bounded by the first- and third-order returns. Moreover, for the first time, we find that the high-order rescatterings are asymmetric regarding the molecular rotation of 180°, but always correlate with the first-order returns. Our last result is that by breaking the laser symmetry in an appropriate way, the contribution of multiple rescatterings is removed so that the continuum region is entirely defined by the first-order return energies.

4.
BMC Plant Biol ; 20(1): 358, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32727354

ABSTRACT

BACKGROUND: Understanding the genetic diversity in endangered species that occur inforest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. RESULTS: In this study, we employed Illumina HiSeq™ 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. CONCLUSION: Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.


Subject(s)
Expressed Sequence Tags , Genetic Variation , Microsatellite Repeats , Panax/genetics , Endangered Species , Gene Expression Profiling , Gene Flow , Genetic Markers , Genetics, Population , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Vietnam
5.
Tree Physiol ; 37(11): 1457-1468, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28985426

ABSTRACT

Many semi-arid ecosystems are simultaneously limited by soil water and nitrogen (N). We conducted a greenhouse experiment to address how N availability impacts drought-resistant traits of Catalpa bungei C. A. Mey at the physiological and molecular level. A factorial design was used, consisting of sufficient-N and deficient-N combined with moderate drought and well-watered conditions. Seedling biomass and major root parameters were significantly suppressed by drought under the deficient-N condition, whereas N application mitigated the inhibiting effects of drought on root growth, particularly that of fine roots with a diameter <0.2 mm. Intrinsic water-use efficiency was promoted by N addition under both water conditions, whereas stable carbon isotope compositions (δ13C) was promoted by N addition only under the well-watered condition. Nitrogen application positively impacted drought adaptive responses including osmotic adjustment and homeostasis of reactive oxygen species, the content of free proline, soluble sugar and superoxide dismutase activity: all were increased upon drought under sufficient-N conditions but not under deficient-N conditions. The extent of abscisic acid (ABA) inducement upon drought was elevated by N application. Furthermore, an N-dependent crosstalk between ABA, jasmonic acid and indole acetic acid at the biosynthesis level contributed to better drought acclimation. Moreover, the transcriptional level of most genes responsible for the ABA signal transduction pathway, and genes encoding the antioxidant enzymes and plasma membrane intrinsic proteins, are elevated upon drought only under sufficient-N addition. These observations confirmed at the molecular level that major adaptive responses to drought are dependent on sufficient N nutrition. Although N uptake was decreased under drought, N-use efficiency and transcription of most genes encoding N metabolism enzymes were elevated, demonstrating that active N metabolism positively contributed drought resistance and growth of C. bungei under sufficient-N conditions.


Subject(s)
Bignoniaceae/physiology , Droughts , Nitrogen/deficiency , Bignoniaceae/genetics , Bignoniaceae/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...