Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 169: 105609, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453701

ABSTRACT

Five new flavonoid C-glycosides named desmodinosides A-E (1-5) and one known compound, apigenin 6-C-ß-d-xylopyranosyl-2''-O-ß-D-glucopyranoside (6) have been isolated from the methanol extract of the aerial parts of Desmodium heterocarpon var. stigosum. These compounds were determined by 1D and 2D-NMR and HR-MS spectroscopies. The methanol extract of this plant, in particular, demonstrated hepatoprotection and antifungal inhibition. This extract has a remarkable hepatoprotection and activity-dose response with an EC50 of 43.07 µg/mL. The hepatoprotective effect on human liver hepatoma cells (HepG2) of the isolated flavonoid C-glycosides 1-6 was observed. Desmodinosides A-C (1-3) were found to exhibit moderate hepatoprotective activity on HepG2 cells. Of these, compound 2 showed the best hepatoprotective activity with an EC50 value of 74.12 µg/mL. While compounds 1 and 3 displayed EC50 values of 271.21 and 211.99 µg/mL, respectively. Quercetin, a positive control, also caused an EC50 value of 36.42 µg/mL. In addition to having hepatoprotective effect, the methanol extract had an inhibitory effect on the growth of oomycete; it inhibited Phytophthora infestans with IC50 of 13.3 µg/mL and IC90 of 78.7 µg/mL. The oomycete inhibition was directly attributed to compounds 5 and 6, which significantly inhibited P. infestans with IC50 values of 27.4 and 24.7 µg/mL, respectively. Both 5 and 6 and methanol extract were active against P. infestanse in a dose-dependent manner. Our study demonstrated for the first time the new flavonoid C-glycosides from D. heterocarpon var. stigosum and their novel pharmacological properties. The study findings also suggest the plant extract and its metabolites could be used as a new botanical source of bioactive compounds.


Subject(s)
Antifungal Agents , Flavonoids , Humans , Antifungal Agents/pharmacology , Methanol , Molecular Structure , Glycosides , Plant Extracts/chemistry
2.
Z Naturforsch C J Biosci ; 78(5-6): 179-187, 2023 May 25.
Article in English | MEDLINE | ID: mdl-35768067

ABSTRACT

In the course of finding new antifungal natural compounds against plant pathogens, the methanol extract of Desmodium triflorum was investigated phytochemically. From n-butanol-soluble fraction, seven compounds (1-7) were isolated and structurally elucidated. Of which, six compounds belong to flavone 6- or 8-C-glycoside class (1-6). Three major compounds (1-3) exhibited moderate in vitro antifungal activity against Sclerotium rolfsii, Fusarium oxysporum f. sp. cubense, and Phytophthora palmivora. Compound 1 (IC50 = 162.1 µg/mL) was most active against S. rolfsii in a dose-dependent manner. At 300 µg/mL, compounds 1 and 2 significantly inhibited P. palmivora, whereas compound 3 lacked effectiveness. In addition, the nanoemulsion of the methanol extract with a droplet size of 12.2 nm displayed an excellent inhibition against S. rolfsii and P. palmivora compared with the normal extract. The presence of 1 (0.846%) and 2 (0.759%) in the methanol extract may attribute to the antifungal activity of D. triflorum. These results proved the potential of D. triflorum and its C-glycoside flavonoids against phytopathogenic fungi for the first time. Besides, an enhancement in the effectiveness of nanoemulsion containing D. triflorum extract against the fungi was confirmed. The structural characteristics of 1 and 2 could be considered to develop new fungicidal substances in the future.


Subject(s)
Fungicides, Industrial , Fusarium , Antifungal Agents/pharmacology , Methanol , Fungi , Fungicides, Industrial/chemistry , Plant Extracts/chemistry
3.
PLoS One ; 12(7): e0181499, 2017.
Article in English | MEDLINE | ID: mdl-28742863

ABSTRACT

In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 µg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 µg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 µg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 µg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.


Subject(s)
Anti-Bacterial Agents/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ralstonia solanacearum/drug effects , Sapium/chemistry , Solanum lycopersicum/microbiology , Tannins/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Ralstonia solanacearum/physiology , Tannins/chemistry , Tannins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...