Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics Clin Appl ; 18(2): e2300053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295123

ABSTRACT

PURPOSE: Advances in mass spectrometry-based quantitative proteomic analysis have successfully demonstrated the in-depth detection of protein biomarkers in bronchoalveolar lavage fluid (BALF) from patients with lung cancers. Recently, ion mobility technology was incorporated into the mass spectrometers escalating the sensitivity and throughput. Utilizing these advantages, herein, we employed the parallel accumulation-serial fragmentation (PASEF) implanted in a timsTOF Pro mass spectrometer to examine the alteration of BALF proteomes in patients with nonsmall cell lung cancers (NSCLCs). EXPERIMENTAL DESIGN: BALF proteins were processed from patients with NSCLC and analyzed in a timsTOF Pro mass spectrometer with the PASEF method using a peptide input of 100 ng. Label-free mass spectrometry data were analyzed in the FragPipe platform. RESULTS: We quantitated over 1400 proteins from a single injection of 100 ng of peptides per sample with a median of ∼2000 proteins. We were able to find a few potential biomarker proteins upregulated in NSCLC. CONCLUSIONS AND CLINICAL RELEVANCE: The alterations of the BALF proteome landscape vary among patients with NSCLC as previously observed in patients with small-cell lung cancers. The PASEF method has significantly enhanced the sensitivity and throughput, demonstrating its effectiveness in clinical research and application.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Bronchoalveolar Lavage Fluid/chemistry , Lung Neoplasms/metabolism , Proteomics/methods , Mass Spectrometry , Peptides , Proteome
2.
Biology (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36979087

ABSTRACT

Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.

3.
Proteomics Clin Appl ; 17(5): e2300011, 2023 09.
Article in English | MEDLINE | ID: mdl-36807835

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) is one of the malignant cancers with aggressive progression and poor prognosis. Bronchoalveolar lavage fluid (BALF) has been arising recently as a potential source of biomarkers for lung cancers. In this study, we performed quantitative BALF proteomic analysis to identify potential biomarkers for SCLC. EXPERIMENTAL DESIGN: BALF were collected from tumor-bearing lungs and non-tumor lungs of five SCLC patients. Then, BALF proteomes were prepared for a TMT-based quantitative mass spectrometry analysis. Differentially expressed proteins (DEP) were identified when considering individual variation. Potential SCLC biomarker candidates were validated by immunohistochemistry (IHC). A public database of multiple SCLC cell lines was used to evaluate the correlation of these markers with SCLC subtypes and chemo-drug responses. RESULTS: We identified 460 BALF proteins in SCLC patients and observed considerable individual variation among the patients. Immunohistochemical analysis and bioinformatics resulted in the identification of CNDP2 and RNPEP as potential subtype markers for ASCL1 and NEUROD1, respectively. In addition, CNDP2 was found to be positively correlated with responses to etoposide, carboplatin, and irinotecan. CONCLUSIONS AND CLINICAL RELEVANCE: BALF is an emerging source of biomarkers, making it useful for the diagnosis and prognosis of lung cancers. We characterized the proteomes of paired BALF samples collected from tumor-bearing and non-tumor lungs of SCLC patients. Several proteins were found elevated in tumor-bearing BALF, and especially CNDP2 and RNPEP appeared to be potential indicators for ASLC1-high and NEUROD1-high subtypes of SCLC, respectively. The positive correlation of CNDP2 with chemo-drug responses would help to make decisions for treatment of SCLC patients. These putative biomarkers could be comprehensively investigated for a clinical use towards precision medicine.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/diagnosis , Bronchoalveolar Lavage Fluid , Proteomics , Proteome , Biomarkers, Tumor/metabolism , Lung Neoplasms/metabolism
4.
Mikrochim Acta ; 188(11): 386, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34664145

ABSTRACT

A fluorescent paper strip immunoassay in conjunction with carbon nanodots@silica (CND@SiO2) as a label was developed for the quantitative measurements of human serum amyloid A1 (hSAA1) in serum at clinically significant concentrations for lung cancer diagnosis. Monodispersed CND@SiO2 was prepared by cohydrolysis between silane-crosslinked carbon nanodots and silica precursors via the Ströber method and further attached covalently to anti-hSAA1 (14F8) monoclonal antibody [anti-hSAA1(14F8)] specific to the hSAA1 target. The hSAA1 concentrations were then determined by quantifying the blue fluorescence intensity upon 365 nm excitation of the captured hSAA1 with anti-hSAA1(14F8)-CND@SiO2 conjugates in the test line on a paper strip where anti-hSAA1 (10G1) monoclonal antibody was physisorbed. The developed fluorescent paper strip with CND@SiO2 can detect hSAA1 at concentrations ranging from 0.1 to 5 nM (R2 = 0.995), with a limit of detection of  0.258 nM in 10 mM phosphate buffer pH 7.4 containing human serum albumin. The performance of  recovery (90.98-109.17%) and repeatability (coefficients of variation < 8.46%) obtained was also acceptable for quantitative determinations. The platform was employed for direct determination of hSAA1 concentrations in undiluted serum samples from lung cancer patients (relative standard deviation (RSD) < 7.46%) and healthy humans (RSD < 3.96%). The results were compared with those obtained using a commercially available enzyme-linked immunosorbent assay alongside liquid chromatography with tandem mass spectrometry measurements.


Subject(s)
Carbon/chemistry , Immunoassay/methods , Serum Amyloid A Protein/metabolism , Silicon Dioxide/chemistry , Fluorescence , Humans
5.
Mol Brain ; 12(1): 116, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888684

ABSTRACT

BACKGROUND: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare form of infantile-onset leukodystrophy. The disorder is caused primarily by mutations of MLC1 that leads to a series of phenotypic outcomes including vacuolation of myelin and astrocytes, subcortical cysts, brain edema, and macrocephaly. Recent studies have indicated that functional interactions among MLC1, GlialCAM, and ClC-2 channels play key roles in the regulation of neuronal, glial and vascular homeostasis. However, the physiological role of MLC1 in cellular homeostatic communication remains poorly understood. In the present study, we investigated the cellular function of MLC1 and its effects on cell-cell interactions. METHODS: MLC1-dependent cellular morphology and motility were analyzed by using confocal and live cell imaging technique. Biochemical approaches such as immunoblotting, co-immunoprecipitation, and surface biotinylation were conducted to support data. RESULTS: We found that the altered MLC1 expression and localization led to a great alteration in cellular morphology and motility through actin remodeling. MLC1 overexpression induced filopodia formation and suppressed motility. And, MLC1 proteins expressed in patient-derived MLC1 mutants resulted in trapping in the ER although no changes in morphology or motility were observed. Interestingly knockdown of Mlc1 induced Arp3-Cortactin interaction, lamellipodia formation, and increased the membrane ruffling of the astrocytes. These data indicate that subcellular localization of expressed MLC1 at the plasma membrane is critical for changes in actin dynamics through ARP2/3 complex. Thus, our results suggest that misallocation of pathogenic mutant MLC1 may disturbs the stable cell-cell communication and the homeostatic regulation of astrocytes in patients with MLC.


Subject(s)
Cell Membrane/metabolism , Cell Movement , Cell Shape , Membrane Proteins/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Down-Regulation , Green Fluorescent Proteins/metabolism , Humans , Membrane Proteins/genetics , Mice , Protein Binding , Protein Transport , Pseudopodia/metabolism , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...