Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(48): 45414-45427, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075749

ABSTRACT

Lithium-ion batteries lay the foundation for satisfying the fast-growing demand of portable electronics and electric vehicles. However, due to the complexity of material syntheses, high fabrication temperature condition, and toxic gas emission, high volume manufacturing of lithium-ion batteries is still challenging. Here, we propose a modified coprecipitation method to synthesize Li1.0Ni0.6Mn0.2Co0.2O2 (NMC622-MCP) as a cathode material in a simple, cost-effective, and environmentally friendly approach. We demonstrate that the proposed method can be operated in a lower temperature environment, with respect to the requirement of conventional synthesis methods. Furthermore, only CO2 gas is emitted during synthesis. We also employed first-principles simulations to evaluate the crystallinity of the synthesized materials via X-ray diffractometer patterns. During charge/discharge processes, the obtained cathode materials induce outstanding electrochemical performance with a maximum specific capacity of up to 206.9 mAh g-1 at 0.05 C and a retention capacity of 83.22% after 100 cycles. Thus, the simple, cost-effective, environmentally friendly, and highly electrochemical performance of the newly acquired material envisages the modified coprecipitation method as a promising tool to manufacture cathode materials for lithium-ion batteries.

2.
Nat Commun ; 12(1): 3081, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035270

ABSTRACT

The conventional solid-state reaction suffers from low diffusivity, high energy consumption, and uncontrolled morphology. These limitations are competed by the presence of water in solution route reaction. Herein, based on concept of combining above methods, we report a facile solid-state reaction conducted in water vapor at low temperature along with calcium doping for modifying lithium vanadate as anode material for lithium-ion batteries. The optimized material, delivers a superior specific capacity of 543.1, 477.1, and 337.2 mAh g-1 after 200 and 1000 cycles at current densities of 100, 1000 and 4000 mA g-1, respectively, which is attributed to the contribution of pseudocapacitance. In this work, we also use experimental and theoretical calculation to demonstrate that the enhancement of doped lithium vanadate is attributed to particles confinement of droplets in water vapor along with the surface and structure variation of calcium doping effect.

3.
Inorg Chem ; 56(24): 15130-15137, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29192776

ABSTRACT

NaCa3PSiO8 was synthesized in a microwave-assisted solid-state reaction. The crystal structure of the synthesized compound was solved using a least-squares method, followed by simulated annealing. The compound was crystallized in the orthorhombic space group Pna21, belonging to Laue class mmm. The structure consisted of two layers of cation planes, each of which contained three cation channels. The cation channels in each of the layers ran antiparallel to that of the adjacent layer. All the major cations together constituted four distinct crystallographic sites. The Rietveld refinement of the powder X-ray diffraction data, followed by the maximum-entropy method analysis, confirmed the obtained structure solutions. The electronic band structure of the compound was analyzed through density function theory calculations. Luminescence properties of the compound, upon activating with Eu2+ ions, were analyzed through photoluminescence measurements and decay profile analysis. The compound was found to exhibit green luminescence centered at ∼502 nm, with a typical broadband emission due to the transition from the crystal-field split 4f65d to 4f7 levels.

4.
Inorg Chem ; 56(10): 5696-5703, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28467077

ABSTRACT

A series of britholite compounds were synthesized by simultaneous introduction of trivalent La3+ and Si4+ ions into an apatite structure. The variations in the average structure, electronic band structure, and microstructural properties resulting from the introduction of cation pairs were analyzed as a function of their concentration. The effects of the structural variance and microstructural properties on the broad-band-emitting activator ions were studied by introducing Eu2+ ions as activators. For the resulting compound, which had dual emission bands in the blue and yellow regions of the spectrum, the emission peak position and strength were dependent upon the concentration of La3+-Si4+ pairs. By engineering the relative sizes of the two possible activator sites in the structure, 4f and 6h, through the introduction of a combination of trivalent La3+ and a polyanion, the preferential site occupancy of the activator ions was favorably altered. Additionally, the activator ions responsible for the lower-Stokes-shifted blue component of the emission functioned as a sensitizer of the larger-Stokes-shifted yellow-emitting activators, and predominantly yellow-emitting phosphors were achieved. The feasibility of developing a white light-emitting solid-state device using the developed phosphor was also demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...