Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077861

ABSTRACT

Dispersal routes of metastatic cells are not medically detected or even visible. A molecular evolutionary analysis of tumor variation provides a way to retrospectively infer metastatic migration histories and answer questions such as whether the majority of metastases are seeded from clones within primary tumors or seeded from clones within pre-existing metastases, as well as whether the evolution of metastases is generally consistent with any proposed models. We seek answers to these fundamental questions through a systematic patient-centric retrospective analysis that maps the dynamic evolutionary history of tumor cell migrations in many cancers. We analyzed tumor genetic heterogeneity in 51 cancer patients and found that most metastatic migration histories were best described by a hybrid of models of metastatic tumor evolution. Synthesizing across metastatic migration histories, we found new tumor seedings arising from clones of pre-existing metastases as often as they arose from clones from primary tumors. There were also many clone exchanges between the source and recipient tumors. Therefore, a molecular phylogenetic analysis of tumor variation provides a retrospective glimpse into general patterns of metastatic migration histories in cancer patients.

2.
Commun Biol ; 5(1): 617, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732905

ABSTRACT

Cancer cell genomes change continuously due to mutations, and mutational processes change over time in patients, leaving dynamic signatures in the accumulated genomic variation in tumors. Many computational methods detect the relative activities of known mutation signatures. However, these methods may produce erroneous signatures when applied to individual branches in cancer cell phylogenies. Here, we show that the inference of branch-specific mutational signatures can be improved through a joint analysis of the collections of mutations mapped on proximal branches of the cancer cell phylogeny. This approach reduces the false-positive discovery rate of branch-specific signatures and can sometimes detect faint signatures. An analysis of empirical data from 61 lung cancer patients supports trends based on computer-simulated datasets for which the correct signatures are known. In lung cancer somatic variation, we detect a decreasing trend of smoking-related mutational processes over time and an increasing influence of APOBEC mutational processes as the tumor evolution progresses. These analyses also reveal patterns of conservation and divergence of mutational processes in cell lineages within patients.


Subject(s)
Genome, Human , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Mutation , Phylogeny
3.
Bioinformatics ; 36(Suppl_2): i675-i683, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33381835

ABSTRACT

SUMMARY: Metastases cause a vast majority of cancer morbidity and mortality. Metastatic clones are formed by dispersal of cancer cells to secondary tissues, and are not medically detected or visible until later stages of cancer development. Clone phylogenies within patients provide a means of tracing the otherwise inaccessible dynamic history of migrations of cancer cells. Here, we present a new Bayesian approach, PathFinder, for reconstructing the routes of cancer cell migrations. PathFinder uses the clone phylogeny, the number of mutational differences among clones, and the information on the presence and absence of observed clones in primary and metastatic tumors. By analyzing simulated datasets, we found that PathFinder performes well in reconstructing clone migrations from the primary tumor to new metastases as well as between metastases. It was more challenging to trace migrations from metastases back to primary tumors. We found that a vast majority of errors can be corrected by sampling more clones per tumor, and by increasing the number of genetic variants assayed per clone. We also identified situations in which phylogenetic approaches alone are not sufficient to reconstruct migration routes.In conclusion, we anticipate that the use of PathFinder will enable a more reliable inference of migration histories and their posterior probabilities, which is required to assess the relative preponderance of seeding of new metastasis by clones from primary tumors and/or existing metastases. AVAILABILITY AND IMPLEMENTATION: PathFinder is available on the web at https://github.com/SayakaMiura/PathFinder.


Subject(s)
Neoplasms , Bayes Theorem , Clone Cells , Humans , Mutation , Neoplasms/genetics , Phylogeny
4.
Sci Rep ; 10(1): 3498, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32103044

ABSTRACT

Tumors harbor extensive genetic heterogeneity in the form of distinct clone genotypes that arise over time and across different tissues and regions in cancer. Many computational methods produce clone phylogenies from population bulk sequencing data collected from multiple tumor samples from a patient. These clone phylogenies are used to infer mutation order and clone origins during tumor progression, rendering the selection of the appropriate clonal deconvolution method critical. Surprisingly, absolute and relative accuracies of these methods in correctly inferring clone phylogenies are yet to consistently assessed. Therefore, we evaluated the performance of seven computational methods. The accuracy of the reconstructed mutation order and inferred clone groupings varied extensively among methods. All the tested methods showed limited ability to identify ancestral clone sequences present in tumor samples correctly. The presence of copy number alterations, the occurrence of multiple seeding events among tumor sites during metastatic tumor evolution, and extensive intermixture of cancer cells among tumors hindered the detection of clones and the inference of clone phylogenies for all methods tested. Overall, CloneFinder, MACHINA, and LICHeE showed the highest overall accuracy, but none of the methods performed well for all simulated datasets. So, we present guidelines for selecting methods for data analysis.


Subject(s)
Computational Biology/methods , Neoplasms/pathology , Databases, Genetic , Genetic Heterogeneity , Humans , Neoplasms/classification , Neoplasms/genetics , Polymorphism, Single Nucleotide
5.
Cancers (Basel) ; 11(12)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783570

ABSTRACT

Understanding tumor progression and metastatic potential are important in cancer biology. Metastasis is the migration and colonization of clones in secondary tissues. Here, we posit that clone migration events between tumors resemble the dispersal of individuals between distinct geographic regions. This similarity makes Bayesian biogeographic analysis suitable for inferring cancer cell migration paths. We evaluated the accuracy of a Bayesian biogeography method (BBM) in inferring metastatic patterns and compared it with the accuracy of a parsimony-based approach (metastatic and clonal history integrative analysis, MACHINA) that has been specifically developed to infer clone migration patterns among tumors. We used computer-simulated datasets in which simple to complex migration patterns were modeled. BBM and MACHINA were effective in reliably reconstructing simple migration patterns from primary tumors to metastases. However, both of them exhibited a limited ability to accurately infer complex migration paths that involve the migration of clones from one metastatic tumor to another and from metastasis to the primary tumor. Therefore, advanced computational methods are still needed for the biologically realistic tracing of migration paths and to assess the relative preponderance of different types of seeding and reseeding events during cancer progression in patients.

6.
Bioinformatics ; 34(17): i917-i926, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30423071

ABSTRACT

Motivation: Tumor sequencing has entered an exciting phase with the advent of single-cell techniques that are revolutionizing the assessment of single nucleotide variation (SNV) at the highest cellular resolution. However, state-of-the-art single-cell sequencing technologies produce data with many missing bases (MBs) and incorrect base designations that lead to false-positive (FP) and false-negative (FN) detection of somatic mutations. While computational methods are available to make biological inferences in the presence of these errors, the accuracy of the imputed MBs and corrected FPs and FNs remains unknown. Results: Using computer simulated datasets, we assessed the robustness performance of four existing methods (OncoNEM, SCG, SCITE and SiFit) and one new method (BEAM). BEAM is a Bayesian evolution-aware method that improves the quality of single-cell sequences by using the intrinsic evolutionary information in the single-cell data in a molecular phylogenetic framework. Overall, BEAM and SCITE performed the best. Most of the methods imputed MBs with high accuracy, but effective detection and correction of FPs and FNs is a challenge, especially for small datasets. Analysis of an empirical dataset shows that computational methods can improve both the quality of tumor single-cell sequences and their utility for biological inference. In conclusion, tumor cells descend from pre-existing cells, which creates evolutionary continuity in single-cell sequencing datasets. This information enables BEAM and other methods to correctly impute missing data and incorrect base assignments, but correction of FPs and FNs remains challenging when the number of SNVs sampled is small relative to the number of cells sequenced. Availability and implementation: BEAM is available on the web at https://github.com/SayakaMiura/BEAM.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Single-Cell Analysis/methods , Bayes Theorem , Humans , Phylogeny
7.
Bioinformatics ; 34(23): 4017-4026, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29931046

ABSTRACT

Motivation: Analyses of data generated from bulk sequencing of tumors have revealed extensive genomic heterogeneity within patients. Many computational methods have been developed to enable the inference of genotypes of tumor cell populations (clones) from bulk sequencing data. However, the relative and absolute accuracy of available computational methods in estimating clone counts and clone genotypes is not yet known. Results: We have assessed the performance of nine methods, including eight previously-published and one new method (CloneFinder), by analyzing computer simulated datasets. CloneFinder, LICHeE, CITUP and cloneHD inferred clone genotypes with low error (<5% per clone) for a majority of datasets in which the tumor samples contained evolutionarily-related clones. Computational methods did not perform well for datasets in which tumor samples contained mixtures of clones from different clonal lineages. Generally, the number of clones was underestimated by cloneHD and overestimated by PhyloWGS, and BayClone2, Canopy and Clomial required prior information regarding the number of clones. AncesTree and Canopy did not produce results for a large number of datasets. Overall, the deconvolution of clone genotypes from single nucleotide variant (SNV) frequency differences among tumor samples remains challenging, so there is a need to develop more accurate computational methods and robust software for clone genotype inference. Availability and implementation: CloneFinder is implemented in Python and is available from https://github.com/gstecher/CloneFinderAPI. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Clone Cells , Genotype , Neoplasms/genetics , Software , Computational Biology , Computer Simulation , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...