Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(4): pgae153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665159

ABSTRACT

Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Šcryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.

2.
Exp Hematol ; 130: 104135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072134

ABSTRACT

Epigenetic regulators, such as the polycomb repressive complex 2 (PRC2), play a critical role in both normal development and carcinogenesis. Mutations and functional dysregulation of PRC2 complex components, such as EZH2, are implicated in various forms of cancer and associated with poor prognosis. This study investigated the epigenetic vulnerabilities of acute myeloid leukemia (AML) and myelodysplastic/myeloproliferative disorders (MDS/MPN) by performing a chemical probe screen in patient cells. Paradoxically, we observed increased sensitivity to EZH2 and embryonic ectoderm development (EED) inhibitors in AML and MDS/MPN patient cells harboring EZH2 mutations. Expression analysis indicated that EZH2 inhibition elicited upregulation of pathways responsible for cell death and growth arrest, specifically in patient cells with mutant EZH2. The identified EZH2 mutations had drastically reduced catalytic activity, resulting in lower cellular H3K27me3 levels, and were associated with decreased EZH2 and PRC2 component EED protein levels. Overall, this study provides an important understanding of the role of EZH2 dysregulation in blood cancers and may indicate disease etiology for these poor prognosis AML and MDS/MPN cases.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Leukemia, Myeloid, Acute , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Leukemia, Myeloid, Acute/genetics , Epigenesis, Genetic , Mutation
3.
ACS Med Chem Lett ; 14(12): 1746-1753, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116405

ABSTRACT

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.

4.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37770003

ABSTRACT

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Subject(s)
Flufenamic Acid , Neoplasms , Humans , Flufenamic Acid/pharmacology , Transcription Factors/metabolism , Gene Expression Regulation , Hippo Signaling Pathway , Neoplasms/genetics
5.
Methods Mol Biol ; 2706: 149-165, 2023.
Article in English | MEDLINE | ID: mdl-37558947

ABSTRACT

Cellular thermal shift assay (CETSA) is based on the thermal stabilization of the protein target by a compound binding. Thus, CETSA can be used to measure a compound's cellular target engagement and permeability. HiBiT CETSA method is quantitative and has higher throughput compared to the traditional Western-based CETSA. Here, we describe the protocol for a HiBiT CETSA, which utilizes a HiBiT tag derived from the NanoLuciferase (NanoLuc) that upon complementation by LgBiT NanoLuc tag produces a bright signal enabling tracking of the effects of increasing temperature on the stability of a protein-of-interest in the presence/absence of various compounds. Exposure of a HiBiT-tagged protein to increasing temperatures induces protein denaturation and thus decreased LgBiT complementation and NanoLuc signal. As the stability of proteins at higher temperatures can be influenced by the compound binding, this method enables screening for target engagement in living or permeabilized cells.


Subject(s)
Hot Temperature , Proteins , Temperature
6.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802665

ABSTRACT

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Subject(s)
Signal Transduction , Ubiquitin-Specific Proteases , Gene Expression Regulation , Endopeptidases
7.
Annu Rev Biochem ; 91: 61-87, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35363509

ABSTRACT

Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery.

8.
Redox Biol ; 51: 102282, 2022 05.
Article in English | MEDLINE | ID: mdl-35305370

ABSTRACT

Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.


Subject(s)
Leukemia, Myeloid, Acute , Protein-Arginine N-Methyltransferases , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Oxidation-Reduction , Oxidative Stress , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
9.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34782742

ABSTRACT

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Subject(s)
Cell Nucleolus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Molecular Probes/chemistry , Protein Domains , Repressor Proteins/metabolism , Methylation , Multiple Myeloma/metabolism , Nucleosomes/metabolism
10.
J Vis Exp ; (174)2021 08 07.
Article in English | MEDLINE | ID: mdl-34424246

ABSTRACT

Protein methyltransferases (PRMTs) catalyze the transfer of a methyl group to arginine residues of substrate proteins. The PRMT family consists of nine members that can monomethylate or symmetrically/asymmetrically dimethylate arginine residues. Several antibodies recognizing different types of arginine methylation of various proteins are available; thus, providing tools for the development of PRMT activity biomarker assays. PRMT antibody-based assays are challenging due to overlapping substrates and motif-based antibody specificities. These issues and the experimental setup to investigate the arginine methylation contributed by individual PRMTs are discussed. Through the careful selection of the representative substrates that are biomarkers for eight out of nine PRMTs, a panel of PRMT activity assays were designed. Here, the protocols for cellular assays quantitatively measuring the enzymatic activity of individual members of the PRMT family in cells are reported. The advantage of the described methods is their straightforward performance in any lab with cell culture and fluorescent western blot capabilities. The substrate specificity and chosen antibody reliability were fully validated with knockdown and overexpression approaches. In addition to detailed guidelines of the assay biomarkers and antibodies, information on the use of an inhibitor tool compound collection for PRMTs is also provided.


Subject(s)
Arginine , Protein-Arginine N-Methyltransferases , Arginine/metabolism , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Reproducibility of Results , Substrate Specificity
11.
ChemMedChem ; 16(19): 2982-3002, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34164919

ABSTRACT

The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.


Subject(s)
Antineoplastic Agents/pharmacology , Flufenamic Acid/pharmacology , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flufenamic Acid/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , TEA Domain Transcription Factors/metabolism , Tumor Cells, Cultured
12.
Nat Commun ; 12(1): 979, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579912

ABSTRACT

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/drug effects , Protein-Arginine N-Methyltransferases/genetics , RNA Splicing , Xenograft Model Antitumor Assays
13.
Cell ; 162(2): 391-402, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186192

ABSTRACT

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine. To study this phenomenon comprehensively and systematically, we used RNAi to compare loss-of-function phenotypes for ∼1,400 genes in two isolates of C. elegans and find that ∼20% of genes differ in the severity of phenotypes in these two genetic backgrounds. Crucially, this effect of genetic background on the severity of both RNAi and mutant phenotypes can be predicted from variation in the expression levels of the affected gene. This is also true in mammalian cells, suggesting it is a general property of genetic networks. We suggest that differences in the manifestation of mutant phenotypes between individuals are largely the result of natural variation in gene expression.


Subject(s)
Caenorhabditis elegans/genetics , Mutation , Animals , Caenorhabditis elegans/classification , Gene Knockdown Techniques , Genetic Variation , Phenotype , RNA Interference
14.
Cell ; 148(4): 792-802, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341449

ABSTRACT

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes.


Subject(s)
Caenorhabditis elegans/genetics , Gene Regulatory Networks , Genetic Fitness , Animals , Escherichia coli/genetics , Phenotype , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...