Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 37(10): e23447, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37368822

ABSTRACT

Triclosan has been widely used as an antimicrobial agent. However, triclosan was found to cause toxicity, including muscle contraction disturbances, carcinogenesis, and endocrine disorders. In addition, it was found to affect central nervous system function adversely and even have ototoxic effects. Conventional methods for detecting such triclosan can be performed easily. However, the conventional detection methods are inadequate in precisely reflecting the impact of toxic substances on stressed organisms. Therefore, a test model for the toxic environment at the molecular level through the organism is needed. From that point of view, Daphnia magna is being used as a ubiquitous model. D. magna has the advantages of easy cultivation, a short lifespan and high reproductive capacity, and high sensitivity to chemicals. Therefore, the protein expression pattern of D. magna that appear in response to chemicals can be utilized as biomarkers for detecting specific chemicals. In this study, we characterized the proteomic response of D. magna following triclosan exposure via two-dimensional (2D) gel electrophoresis. As a result, we confirmed that triclosan exposure completely suppressed D. magna 2-domain hemoglobin protein and evaluated this protein as a biomarker for triclosan detection. We constructed the HeLa cells in which the GFP gene was controlled by D. magna 2-domain hemoglobin promoter, which under normal conditions, expressed GFP, but upon triclosan exposure, suppressed GFP expression. Consequently, we consider that the HeLa cells containing the pBABE-HBF3-GFP plasmid developed in this study can be used as novel biomarkers for triclosan detection.


Subject(s)
Triclosan , Water Pollutants, Chemical , Animals , Humans , Triclosan/toxicity , Daphnia/genetics , Daphnia/metabolism , HeLa Cells , Proteomics , Water Pollutants, Chemical/pharmacology , Hemoglobins/metabolism , Biomarkers/metabolism
2.
Ecotoxicol Environ Saf ; 254: 114735, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36907088

ABSTRACT

Salmonella is a well-known bacterium that causes waterborne diseases in humans and primates. The need for test models to detect such pathogens and study the responses of such organisms to induced toxic environments is vital. Daphnia magna has been ubiquitously used in aquatic life monitoring for decades because of outstanding properties, such as facile cultivation, short lifespan, and high reproductive capacity. In this study, the proteomic response of D. magna exposed to four Salmonella strains (Salmonella dublin, Salmonella enteritidis, Salmonella enterica, and Salmonella typhimurium) was characterized. As indicated by two-dimensional gel electrophoresis, vitellogenin fused with superoxide dismutase was completely suppressed under exposure to S. dublin. Thus, we evaluated the feasibility of using the vitellogenin 2 gene as a biomarker for S. dublin detection, particularly in providing rapid, visual detection through fluorescent signals. Accordingly, the applicability of the HeLa cells transfected with pBABE-Vtg2B-H2B-GFP as a biomarker for the detection of S. dublin was evaluated, and it was confirmed that the fluorescence signal decreased only when S. dublin was treated. Therefore, such HeLa cells can be utilized as a novel biomarker for detecting S. dublin.


Subject(s)
Daphnia , Vitellogenins , Animals , Humans , Daphnia/genetics , Vitellogenins/genetics , HeLa Cells , Proteomics , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...