Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 103(7): 2436-2446, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29659920

ABSTRACT

Context: Silver-Russell syndrome (SRS) (mainly secondary to 11p15 molecular disruption) and Temple syndrome (TS) (secondary to 14q32.2 molecular disruption) are imprinting disorders with phenotypic (prenatal and postnatal growth retardation, early feeding difficulties) and molecular overlap. Objective: To describe the clinical overlap between SRS and TS and extensively study the molecular aspects of TS. Patients: We retrospectively collected data on 28 patients with disruption of the 14q32.2 imprinted region, identified in our center, and performed extensive molecular analysis. Results: Seventeen (60.7%) patients showed loss of methylation of the MEG3/DLK1 intergenic differentially methylated region by epimutation. Eight (28.6%) patients had maternal uniparental disomy of chromosome 14 and three (10.7%) had a paternal deletion in 14q32.2. Most patients (72.7%) had a Netchine-Harbison SRS clinical scoring system ≥4/6, and consistent with a clinical diagnosis of SRS. The mean age at puberty onset was 7.2 years in girls and 9.6 years in boys; 37.5% had premature pubarche. The body mass index of all patients increased before pubarche and/or the onset of puberty. Multilocus analysis identified multiple methylation defects in 58.8% of patients. We identified four potentially damaging genetic variants in genes encoding proteins involved in the establishment or maintenance of DNA methylation. Conclusions: Most patients with 14q32.2 disruption fulfill the criteria for a clinical diagnosis of SRS. These clinical data suggest similar management of patients with TS and SRS, with special attention to their young age at the onset of puberty and early increase of body mass index.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 14/genetics , Silver-Russell Syndrome/genetics , Adolescent , Adult , Calcium-Binding Proteins , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , DNA Methylation/genetics , Diagnosis, Differential , Female , Genomic Imprinting/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Phenotype , Puberty, Precocious/genetics , RNA, Long Noncoding/genetics , Retrospective Studies , Silver-Russell Syndrome/diagnosis , Syndrome , Uniparental Disomy , Young Adult
2.
J Clin Endocrinol Metab ; 91(6): 2437-40, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16595598

ABSTRACT

CONTEXT: Both adverse intrauterine events and genetic background have been suggested to promote insulin resistance in subjects born small for gestational age (SGA). Among candidate genes that potentially influence both fetal growth and glucose metabolism is insulin. The potential effect of the insulin gene VNTR (INS) on birth weight has been controversial so far. OBJECTIVE: The present association study aimed at testing for the contribution of the INS VNTR locus on birth weight and on the metabolic profile of young adults born SGA (mean age, 22 yr). Two groups of subjects were selected on birth data: SGA (birth weight < 10th percentile; n = 735), and appropriate for gestational age (AGA; birth weight between 25th and 75th percentiles; n = 886). All subjects were genotyped for rs689 A/T single nucleotide polymorphism, in complete linkage disequilibrium with the INS VNTR classes I and III, respectively. RESULTS: Class I INS frequencies were similar in the two groups (70% in AGA; 72% in SGA; P = 0.42). There was significant effect on mean birth weight in neither SGA (P = 0.99) nor AGA (P = 0.18). Although the INS VNTR locus did not associate with anomalies of insulin resistance indices in the AGA group, in the SGA group, INS VNTR class III allele was associated with higher insulin resistance (quantitative insulin sensitivity check index = 0.38 vs. 0.39; P = 0.05). Furthermore, there was evidence of an interaction between the SGA/AGA status and INS VNTR locus on insulin resistance indices (P = 0.01) in a multivariate analysis. CONCLUSION: The INS VNTR locus does not associate in a major way with SGA in the French population. However, our data support an interaction between severe fetal growth restriction and INS VNTR locus, which were associated with insulin resistance in young adults born SGA.


Subject(s)
Infant, Small for Gestational Age , Insulin Resistance , Insulin/genetics , Minisatellite Repeats , Adult , Genotype , Humans , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...