Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Spinal Cord Med ; : 1-15, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38391261

ABSTRACT

CONTEXT: Brain-Computer Interface (BCI) is an emerging neurorehabilitation therapy for people with spinal cord injury (SCI). OBJECTIVE: The study aimed to test whether priming the sensorimotor system using BCI-controlled functional electrical stimulation (FES) before physical practice is more beneficial than physical practice alone. METHODS: Ten people with subacute SCI participated in a randomized control trial where the experimental (N = 5) group underwent BCI-FES priming (∼15 min) before physical practice (30 min), while the control (N = 5) group performed physical practice (40 min) of the dominant hand. The primary outcome measures were BCI accuracy, adherence, and perceived workload. The secondary outcome measures were manual muscle test, grip strength, the range of motion, and Electroencephalography (EEG) measured brain activity. RESULTS: The average BCI accuracy was 85%. The experimental group found BCI-FES priming mentally demanding but not frustrating. Two participants in the experimental group did not complete all sessions due to early discharge. There were no significant differences in physical outcomes between the groups. The ratio between eyes closed to eyes opened EEG activity increased more in the experimental group (theta Pθ = 0.008, low beta Plß = 0.009, and high beta Phß = 1.48e-04) indicating better neurological outcomes. There were no measurable immediate effects of BCI-FES priming. CONCLUSION: Priming the brain before physical therapy is feasible but may require more than 15 min. This warrants further investigation with an increased sample size.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420769

ABSTRACT

The aim of the study was to test the feasibility of visual-neurofeedback-guided motor imagery (MI) of the dominant leg, based on source analysis with real-time sLORETA derived from 44 EEG channels. Ten able-bodied participants took part in two sessions: session 1 sustained MI without feedback and session 2 sustained MI of a single leg with neurofeedback. MI was performed in 20 s on and 20 s off intervals to mimic functional magnetic resonance imaging. Neurofeedback in the form of a cortical slice presenting the motor cortex was provided from a frequency band with the strongest activity during real movements. The sLORETA processing delay was 250 ms. Session 1 resulted in bilateral/contralateral activity in the 8-15 Hz band dominantly over the prefrontal cortex while session 2 resulted in ipsi/bilateral activity over the primary motor cortex, covering similar areas as during motor execution. Different frequency bands and spatial distributions in sessions with and without neurofeedback may reflect different motor strategies, most notably a larger proprioception in session 1 and operant conditioning in session 2. Single-leg MI might be used in the early phases of rehabilitation of stroke patients. Simpler visual feedback and motor cueing rather than sustained MI might further increase the intensity of cortical activation.


Subject(s)
Neurofeedback , Humans , Neurofeedback/methods , Leg , Imagination/physiology , Imagery, Psychotherapy , Electroencephalography/methods
3.
Clin Neurophysiol ; 148: 32-43, 2023 04.
Article in English | MEDLINE | ID: mdl-36796284

ABSTRACT

OBJECTIVE: The aim of this study is to explore whether cortical activation and its lateralization during motor imagery (MI) in subacute spinal cord injury (SCI) are indicative of existing or upcoming central neuropathic pain (CNP). METHODS: Multichannel electroencephalogram was recorded during MI of both hands in four groups of participants: able-bodied (N = 10), SCI and CNP (N = 11), SCI who developed CNP within 6 months of EEG recording (N = 10), and SCI who remained CNP-free (N = 10). Source activations and its lateralization were derived in four frequency bands in 20 regions spanning sensorimotor cortex and pain matrix. RESULTS: Statistically significant differences in lateralization were found in the theta band in premotor cortex (upcoming vs existing CNP, p = 0.036), in the alpha band at the insula (healthy vs upcoming CNP, p = 0.012), and in the higher beta band at the somatosensory association cortex (no CNP vs upcoming CNP, p = 0.042). People with upcoming CNP had stronger activation compared to those with no CNP in the higher beta band for MI of both hands. CONCLUSIONS: Activation intensity and lateralization during MI in pain-related areas might hold a predictive value for CNP. SIGNIFICANCE: The study increases understanding of the mechanisms underlying transition from asymptomatic to symptomatic early CNP in SCI.


Subject(s)
Motor Cortex , Neuralgia , Spinal Cord Injuries , Humans , Spinal Cord Injuries/complications , Neuralgia/etiology , Electroencephalography , Pain Measurement
4.
Int J Psychophysiol ; 185: 1-10, 2023 03.
Article in English | MEDLINE | ID: mdl-36634750

ABSTRACT

Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Double-Blind Method , Electroencephalography/methods , Executive Function , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods
5.
Front Rehabil Sci ; 3: 896766, 2022.
Article in English | MEDLINE | ID: mdl-36188944

ABSTRACT

Loss of arm and hand function is one of the most devastating consequences of cervical spinal cord injury (SCI). Although some residual functional neurons often pass the site of injury, recovery after SCI is extremely limited. Recent efforts have aimed to augment traditional rehabilitation by combining exercise-based training with techniques such as transcutaneous spinal cord stimulation (tSCS), and movement priming. Such methods have been linked with elevated corticospinal excitability, and enhanced neuroplastic effects following activity-based therapy. In the present study, we investigated the potential for facilitating tSCS-based exercise-training with brain-computer interface (BCI) motor priming. An individual with chronic AIS A cervical SCI with both sensory and motor complete tetraplegia participated in a two-phase cross-over intervention whereby they engaged in 15 sessions of intensive tSCS-mediated hand training for 1 h, 3 times/week, followed by a two week washout period, and a further 15 sessions of tSCS training with bimanual BCI motor priming preceding each session. We found using the Graded Redefined Assessment for Strength, Sensibility, and Prehension that the participant's arm and hand function improved considerably across each phase of the study: from 96/232 points at baseline, to 117/232 after tSCS training alone, and to 131/232 points after BCI priming with tSCS training, reflecting improved strength, sensation, and gross and fine motor skills. Improved motor scores and heightened perception to sharp sensations improved the neurological level of injury from C4 to C5 following training and improvements were generally maintained four weeks after the final training session. Although functional improvements were similar regardless of the presence of BCI priming, there was a moderate improvement of bilateral strength only when priming preceded tSCS training, perhaps suggesting a benefit of motor priming for tSCS training.

6.
Sensors (Basel) ; 22(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080805

ABSTRACT

AIM: The aim of this study was to differentiate the effects of spinal cord injury (SCI) and central neuropathic pain (CNP) on effective connectivity during motor imagery of legs, where CNP is typically experienced. METHODS: Multichannel EEG was recorded during motor imagery of the legs in 3 groups of people: able-bodied (N = 10), SCI with existing CNP (N = 10), and SCI with no CNP (N = 20). The last group was followed up for 6 months to check for the onset of CNP. Source reconstruction was performed to obtain cortical activity in 17 areas spanning sensorimotor regions and pain matrix. Effective connectivity was calculated using the directed transfer function in 4 frequency bands and compared between groups. RESULTS: A total of 50% of the SCI group with no CNP developed CNP later. Statistically significant differences in effective connectivity were found between all groups. The differences between groups were not dependent on the frequency band. Outflows from the supplementary motor area were greater for the able-bodied group while the outflows from the secondary somatosensory cortex were greater for the SCI groups. The group with existing CNP showed the least differences from the able-bodied group, appearing to reverse the effects of SCI. The connectivities involving the pain matrix were different between able-bodied and SCI groups irrespective of CNP status, indicating their involvement in motor networks generally. SIGNIFICANCE: The study findings might help guide therapeutic interventions targeted at the brain for CNP alleviation as well as motor recovery post SCI.


Subject(s)
Motor Cortex , Neuralgia , Spinal Cord Injuries , Humans , Imagery, Psychotherapy , Neuralgia/complications , Pain Measurement
7.
J Neural Eng ; 19(4)2022 08 11.
Article in English | MEDLINE | ID: mdl-35882224

ABSTRACT

Objective. To characterize the direction within and between brain connectivity in winning and losing players in a competitive brain-computer interface game.Approach. Ten dyads (26.9 ± 4.7 yr old, eight females and 12 males) participated in the study. In a competitive game based on neurofeedback, they used their relative alpha (RA) band power from the electrode location Pz, to control a virtual seesaw. The players in each pair were separated into winners (W) and losers (L) based on their scores. Intrabrain connectivity was analyzed using multivariate Granger causality (GC) and directed transfer function, while interbrain connectivity was analyzed using bivariate GC.Main results. Linear regression analysis revealed a significant relationship (p< 0.05) between RA and individual scores. During the game, W players maintained a higher RA than L players, although it was not higher than their baseline RA. The analysis of intrabrain GC indicated that both groups engaged in general social interactions, but only the W group succeeded in controlling their brain activity at Pz. Group L applied an inappropriate metal strategy, characterized by strong activity in the left frontal cortex, indicative of collaborative gaming. Interbrain GC showed a larger flow of information from the L to the W group, suggesting a higher capability of the W group to monitor the activity of their opponent.Significance. Both innate neurological indices and gaming mental strategies contribute to game outcomes. Future studies should investigate whether there is a causal relationship between these two factors.


Subject(s)
Brain-Computer Interfaces , Video Games , Brain , Female , Humans , Linear Models , Male , Regression Analysis
8.
Sci Rep ; 12(1): 10949, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768524

ABSTRACT

EEG-based neurofeedback uses mental behaviours (MB) to enable voluntary self-modulation of brain activity, and has potential to relieve central neuropathic pain (CNP) after a spinal cord injury (SCI). This study aimed to understand neurofeedback learning and the relationship between MB and neurofeedback success. Twenty-five non-CNP participants and ten CNP participants received neurofeedback training (reinforcing 9-12 Hz; suppressing 4-8 Hz and 20-30 Hz) on four visits. Participants were interviewed about the MB they used after each visit. Questionnaires examined the following factors: self-efficacy, locus of control, motivation, and workload of neurofeedback. MB were grouped into mental strategies (a goal-directed mental action) and affect (emotional experience during neurofeedback). Successful non-CNP participants significantly used more imagination-related MS and reported more negative affect compared to successful CNP participants. However, no mental strategy was clearly associated with neurofeedback success. There was some association between the lack of success and negative affect. Self-efficacy was moderately correlated with neurofeedback success (r = < 0.587, p = < 0.020), whereas locus of control, motivation, and workload had low, non-significant correlations (r < 0.300, p > 0.05). Affect may be more important than mental strategies for a successful neurofeedback performance. Self-efficacy was associated with neurofeedback success, suggesting that increasing confidence in one's neurofeedback abilities may improve neurofeedback performance.


Subject(s)
Neuralgia , Neurofeedback , Spinal Cord Injuries , Electroencephalography , Humans , Neuralgia/complications , Neuralgia/therapy , Self Efficacy , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy
9.
J Clin Med ; 11(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35207314

ABSTRACT

Transcutaneous spinal cord stimulation (tSCS) can improve upper-limb motor function after spinal cord injury. A number of studies have attempted to deduce the corticospinal mechanisms which are modulated following tSCS, with many relying on transcranial magnetic stimulation to provide measures of corticospinal excitability. Other metrics, such as cortical oscillations, may provide an alternative and complementary perspective on the physiological effect of tSCS. Hence, the present study recorded EEG from 30 healthy volunteers to investigate if and how cortical oscillatory dynamics are altered by 10 min of continuous cervical tSCS. Participants performed repetitive upper-limb movements and resting-state tasks while tSCS was delivered to the posterior side of the neck as EEG was recorded simultaneously. The intensity of tSCS was tailored to each participant based on their maximum tolerance (mean: 50 ± 20 mA). A control session was conducted without tSCS. Changes to sensorimotor cortical activity during movement were quantified in terms of event-related (de)synchronisation (ERD/ERS). Our analysis revealed that, on a group level, there was no consistency in terms of the direction of ERD modulation during tSCS, nor was there a dose-effect between tSCS and ERD/ERS. Resting-state oscillatory power was compared before and after tSCS but no statistically significant difference was found in terms of alpha peak frequency or alpha power. However, participants who received the highest stimulation intensities had significantly weakened ERD/ERS (10% ERS) compared to when tSCS was not applied (25% ERD; p = 0.016), suggestive of cortical inhibition. Overall, our results demonstrated that a single 10 min session of tSCS delivered to the cervical region of the spine was not sufficient to induce consistent changes in sensorimotor cortical activity among the entire cohort. However, under high intensities there may be an inhibitory effect at the cortical level. Future work should investigate, with a larger sample size, the effect of session duration and tSCS intensity on cortical oscillations.

10.
IEEE Trans Biomed Eng ; 69(6): 1837-1849, 2022 06.
Article in English | MEDLINE | ID: mdl-34797760

ABSTRACT

There is a growing interest in neuromorphic hardware since it offers a more intuitive way to achieve bio-inspired algorithms. This paper presents a neuromorphic model for intelligently processing continuous electrocardiogram (ECG) signal. This model aims to develop a hardware-based signal processing model and avoid employing digitally intensive operations, such as signal segmentation and feature extraction, which are not desired in an analogue neuromorphic system. We apply delay-based reservoir computing as the information processing core, along with a novel training and labelling method. Different from the conventional ECG classification techniques, this computation model is a end-to-end dynamic system that mimics the real-time signal flow in neuromorphic hardware. The input is the raw ECG stream, while the amplitude of the output represents the risk factor of a ventricular ectopic heartbeat. The intrinsic memristive property of the reservoir empowers the system to retain the historical ECG information for high-dimensional mapping. This model was evaluated with the MIT-BIH database under the inter-patient paradigm and yields 81% sensitivity and 98% accuracy. Under this architecture, the minimum size of memory required in the inference process can be as low as 3.1 MegaByte(MB) because the majority of the computation takes place in the analogue domain. Such computational modelling boosts memory efficiency by simplifying the computing procedure and minimizing the required memory for future wearable devices.


Subject(s)
Electrocardiography , Neural Networks, Computer , Algorithms , Heart Rate , Humans , Signal Processing, Computer-Assisted
11.
Sensors (Basel) ; 21(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34640913

ABSTRACT

Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive neuromodulatory technique that has in recent years been linked to improved volitional limb control in spinal-cord injured individuals. Although the technique is growing in popularity there is still uncertainty regarding the neural mechanisms underpinning sensory and motor recovery. Brain monitoring techniques such as electroencephalography (EEG) may provide further insights to the changes in coritcospinal excitability that have already been demonstrated using other techniques. It is unknown, however, whether intelligible EEG can be extracted while tSCS is being applied, owing to substantial high-amplitude artifacts associated with stimulation-based therapies. Here, for the first time, we characterise the artifacts that manifest in EEG when recorded simultaneously with tSCS. We recorded multi-channel EEG from 21 healthy volunteers as they took part in a resting state and movement task across two sessions: One with tSCS delivered to the cervical region of the neck, and one without tSCS. An offline analysis in the time and frequency domain showed that tSCS manifested as narrow, high-amplitude peaks with a spectral density contained at the stimulation frequency. We quantified the altered signals with descriptive statistics-kurtosis, root-mean-square, complexity, and zero crossings-and applied artifact-suppression techniques-superposition of moving averages, adaptive, median, and notch filtering-to explore whether the effects of tSCS could be suppressed. We found that the superposition of moving averages filter was the most successful technique at returning contaminated EEG to levels statistically similar to that of normal EEG. In the frequency domain, however, notch filtering was more effective at reducing the spectral power contribution of stimulation from frontal and central electrodes. An adaptive filter was more appropriate for channels closer to the stimulation site. Lastly, we found that tSCS posed no detriment the binary classification of upper-limb movements from sensorimotor rhythms, and that adaptive filtering resulted in poorer classification performance. Overall, we showed that, depending on the analysis, EEG monitoring during transcutaneous electrical spinal cord stimulation is feasible. This study supports future investigations using EEG to study the activity of the sensorimotor cortex during tSCS, and potentially paves the way to brain-computer interfaces operating in the presence of spinal stimulation.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Electroencephalography , Humans , Muscle, Skeletal
12.
Front Neurosci ; 15: 705652, 2021.
Article in English | MEDLINE | ID: mdl-34512243

ABSTRACT

Central neuropathic pain (CNP) negatively impacts the quality of life in a large proportion of people with spinal cord injury (SCI). With no cure at present, it is crucial to improve our understanding of how CNP manifests, to develop diagnostic biomarkers for drug development, and to explore prognostic biomarkers for personalised therapy. Previous work has found early evidence of diagnostic and prognostic markers analysing Electroencephalogram (EEG) oscillatory features. In this paper, we explore whether non-linear non-oscillatory EEG features, specifically Higuchi Fractal Dimension (HFD), can be used as prognostic biomarkers to increase the repertoire of available analyses on the EEG of people with subacute SCI, where having both linear and non-linear features for classifying pain may ultimately lead to higher classification accuracy and an intrinsically transferable classifier. We focus on EEG recorded during imagined movement because of the known relation between the motor cortex over-activity and CNP. Analyses were performed on two existing datasets. The first dataset consists of EEG recordings from able-bodied participants (N = 10), participants with chronic SCI and chronic CNP (N = 10), and participants with chronic SCI and no CNP (N = 10). We tested for statistically significant differences in HFD across all pairs of groups using bootstrapping, and found significant differences between all pairs of groups at multiple electrode locations. The second dataset consists of EEG recordings from participants with subacute SCI and no CNP (N = 20). They were followed-up 6 months post recording to test for CNP, at which point (N = 10) participants had developed CNP and (N = 10) participants had not developed CNP. We tested for statistically significant differences in HFD between these two groups using bootstrapping and, encouragingly, also found significant differences at multiple electrode locations. Transferable machine learning classifiers achieved over 80% accuracy discriminating between groups of participants with chronic SCI based on only a single EEG channel as input. The most significant finding is that future and chronic CNP share common features and as a result, the same classifier can be used for both. This sheds new light on pain chronification by showing that frontal areas, involved in the affective aspects of pain and believed to be influenced by long-standing pain, are affected in a much earlier phase of pain development.

13.
Med Biol Eng Comput ; 59(9): 1961-1971, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34398417

ABSTRACT

Ultrasound imaging (USI) biofeedback is a useful therapeutic tool; however, it relies on qualitative assessment by a trained therapist, while existing automatic analysis techniques are computationally demanding. This study aims to present a computationally inexpensive algorithm based on the difference in pixel intensity between USI frames. During an offline experiment, where data was analyzed after the study, participants performed isometric contractions of the gastrocnemius medialis (GM) muscle, as executed (30% of maximum contraction) or attempted (low force contraction up to a point when the participant is aware of exerting force or contracting the muscle) movements, while USI, EMG, and force data were recorded. The algorithm achieved 99% agreement with EMG and force measurements for executed movements and 93% for attempted movements, with USI detecting 1.9% more contractions than the other methods. In the online study, participants performed GM muscle contractions at 10% and 30% of maximum contraction, while the algorithm provided visual feedback proportional to the muscle activity (based on USI recordings during the maximum contraction) in less than 3 s following each contraction. We show that the participants reached the target consistently, learning to perform precise contractions. The algorithm is reliable and computationally very efficient, allowing real-time applications on standard computing hardware. It is a suitable method for automated detection, quantification of muscle contraction, and to provide biofeedback which can be used for training of targeted muscles, making it suitable for rehabilitation. Biofeedback session based on ultrasound imaging (USI) during muscle training. Novel, computationally inexpensive algorithm based on the difference in pixel intensity between USI frames is used to process the video and provide quantitative feedback on the strength of muscle contraction.


Subject(s)
Isometric Contraction , Muscle Contraction , Electromyography , Humans , Muscle, Skeletal/diagnostic imaging , Ultrasonography
14.
Exp Brain Res ; 239(9): 2741-2754, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34232346

ABSTRACT

Binaural beat (BB) is a promising technique for memory improvement in elderly or people with neurological conditions. However, the related modulation of cortical networks followed by behavioral changes has not been investigated. The objective of this study is to establish a relationship between BB oscillatory brain activity evoked by stimulation and a behavioral response in a short term memory task. Three Groups A, B, and C of 20 participants each received alpha (10 Hz), beta (14 Hz), and gamma (30 Hz) BB, respectively, for 15 min. Their EEG was recorded in pre, during, and post BB states. Participants performed a digit span test before and after a BB session. A significant increase in the cognitive score was found only for Group A while a significant decrease in reaction time was noted for Groups A and C. Group A had a significant decrease of theta and increase of alpha power, and a significant increase of theta and decrease of gamma imaginary coherence (ICH) post BB. Group C had a significant increase in theta and gamma power accompanied by the increase of theta and gamma ICH post BB. The effectiveness of BB depends on the frequency of stimulation. A putative neural mechanism involves an increase in theta ICH in parieto-frontal and interhemispheric frontal networks.


Subject(s)
Electroencephalography , Memory, Short-Term , Aged , Cognition , Humans , Pilot Projects , Reaction Time
15.
Brain Cogn ; 152: 105768, 2021 08.
Article in English | MEDLINE | ID: mdl-34144438

ABSTRACT

Action observation and motor imagery are valuable strategies for motor learning. Their simultaneous use (AOMI) increases neural activity, with related benefits for motor learning, compared to the two strategies alone. In this study, we explored how sonification influences AOMI. Twenty-five participants completed a practice block based on AOMI, motor imagery and physical execution of the same action. Participants were divided into two groups: An experimental group that practiced with sonification during AOMI (sAOMI), and a control group, which did not receive any extrinsic feedback. Corticospinal excitability at rest and during action observation and AOMI was assessed before and after practice, with and without sonification sound, to test the development of an audiomotor association. The practice block increased corticospinal excitability in all testing conditions, but sonification did not affect this. In addition, we found no differences in action observation and AOMI, irrespective of sonification. These results suggest that, at least for simple tasks, sonification of AOMI does not influence corticospinal excitability; In these conditions, sonification may have acted as a distractor. Future studies should further explore the relationship between task complexity, value of auditory information and action, to establish whether sAOMI is a valuable for motor learning.


Subject(s)
Evoked Potentials, Motor , Pyramidal Tracts , Humans , Imagination , Muscle, Skeletal , Pyramidal Tracts/diagnostic imaging , Transcranial Magnetic Stimulation
16.
Exp Brain Res ; 239(5): 1489-1505, 2021 May.
Article in English | MEDLINE | ID: mdl-33683403

ABSTRACT

Sonification is a sensory augmentation strategy whereby a sound is associated with, and modulated by, movement. Evidence suggests that sonification could be a viable strategy to maximize learning and rehabilitation. Recent studies investigated sonification of action observation, reporting beneficial effects, especially in Parkinson's disease. However, research on simulation training-a training regime based on action observation and motor imagery, in which actions are internally simulated, without physical execution-suggest that action observation alone is suboptimal, compared to the combined use of action observation and motor imagery. In this study, we explored the effects of sonified action observation and motor imagery on corticospinal excitability, as well as to evaluate the extent of practice-dependent plasticity induced by this training. Nineteen participants were recruited to complete a practice session based on combined and congruent action observation and motor imagery (AOMI) and physical imitation of the same action. Prior to the beginning, participants were randomly assigned to one of two groups, one group (nine participants) completed the practice block with sonified AOMI, while the other group (ten participants) completed the practice without extrinsic auditory information and served as control group. To investigate practice-induced plasticity, participants completed two auditory paired associative stimulation (aPAS) protocols, one completed after the practice block, and another one completed alone, without additional interventions, at least 7 days before the practice. After the practice block, both groups significantly increased their corticospinal excitability, but sonification did not exert additional benefits, compared to non-sonified conditions. In addition, aPAS significantly increased corticospinal excitability when completed alone, but when it was primed by a practice block, no modulatory effects on corticospinal excitability were found. It is possible that sonification of combined action observation and motor imagery may not be a useful strategy to improve corticospinal, but further studies are needed to explore its relationship with performance improvements. We also confirm the neuromodulatory effect of aPAS, but its interaction with audiomotor practice remain unclear.


Subject(s)
Evoked Potentials, Motor , Simulation Training , Humans , Imagination , Muscle, Skeletal , Pyramidal Tracts , Transcranial Magnetic Stimulation
17.
Neurol Sci ; 42(11): 4551-4561, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33624179

ABSTRACT

OBJECTIVE: This study investigated the impact of neurofeedback training on the deeper cortical structures that comprise the "pain matrix" and are involved in processing neuropsychological functions. METHODS: Five paraplegic patients with central neuropathic pain received up to 40 sessions of neurofeedback training. They were asked to simultaneously modulate the relative power of the theta, alpha and beta bands, provided as a feedback from the sensorimotor cortex. The source localization technique was applied on EEG data recorded with 16 electrodes placed over the whole head. RESULTS: Neurofeedback training from the sensorimotor cortex induced effects on the pain matrix and in the areas involved in processing neuropsychological functions such as memory, executive functions and emotional regulations. Alpha and beta band activity was most increased in insular, cingulate and frontal cortex regions, and other areas corresponding to executive and emotional function processing. Theta band decreases were noted in the frontal, cingulate and motor cortices. In group analysis, theta and beta band activity was significantly reduced. CONCLUSION: The single channel electroencephalogram-based neurofeedback training produced effects on similar areas that are targeted in 19 channels standardized low-resolution brain electromagnetic tomography and expensive time-delayed functional magnetic resonance imaging feedback studies.


Subject(s)
Neuralgia , Neurofeedback , Sensorimotor Cortex , Electroencephalography , Frontal Lobe , Humans
18.
J Neuroeng Rehabil ; 18(1): 44, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632262

ABSTRACT

BACKGROUND: Regaining hand function is the top priority for people with tetraplegia, however access to specialised therapy outwith clinics is limited. Here we present a system for hand therapy based on brain-computer interface (BCI) which uses a consumer grade electroencephalography (EEG) device combined with functional electrical stimulation (FES), and evaluate its usability among occupational therapists (OTs) and people with spinal cord injury (SCI) and their family members. METHODS: Users: Eight people with sub-acute SCI (6 M, 2F, age 55.4 ± 15.6) and their caregivers (3 M, 5F, age 45.3 ± 14.3); four OTs (4F, age 42.3 ± 9.8). User Activity: Researchers trained OTs; OTs subsequently taught caregivers to set up the system for the people with SCI to perform hand therapy. Hand therapy consisted of attempted movement (AM) of one hand to lower the power of EEG sensory-motor rhythm in the 8-12 Hz band and thereby activate FES which induced wrist flexion and extension. Technology: Consumer grade wearable EEG, multichannel FES, custom made BCI application. LOCATION: Research space within hospital. Evaluation: donning times, BCI accuracy, BCI and FES parameter repeatability, questionnaires, focus groups and interviews. RESULTS: Effectiveness: The BCI accuracy was 70-90%. Efficiency: Median donning times decreased from 40.5 min for initial session to 27 min during last training session (N = 7), dropping to 14 min on the last self-managed session (N = 3). BCI and FES parameters were stable from session to session. Satisfaction: Mean satisfaction with the system among SCI users and caregivers was 3.68 ± 0.81 (max 5) as measured by QUEST questionnaire. Main facilitators for implementing BCI-FES technology were "seeing hand moving", "doing something useful for the loved ones", good level of computer literacy (people with SCI and caregivers), "active engagement in therapy" (OT), while main barriers were technical complexity of setup (all groups) and "lack of clinical evidence" (OT). CONCLUSION: BCI-FES has potential to be used as at home hand therapy by people with SCI or stroke, provided it is easy to use and support is provided. Transfer of knowledge of operating BCI is possible from researchers to therapists to users and caregivers. Trial registration Registered with NHS GG&C on December 6th 2017; clinicaltrials.gov reference number NCT03257982, url: https://clinicaltrials.gov/ct2/show/NCT03257982 .


Subject(s)
Brain-Computer Interfaces , Electric Stimulation Therapy/instrumentation , Electroencephalography/instrumentation , Spinal Cord Injuries/rehabilitation , Adult , Aged , Caregivers , Female , Hand/physiopathology , Home Care Services , Humans , Male , Middle Aged , Movement/physiology , Occupational Therapy/instrumentation
19.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33376115

ABSTRACT

Functional magnetic resonance imaging (fMRI) neurofeedback (NF) is a promising tool to study the relationship between behavior and brain activity. It enables people to self-regulate their brain signal. Here, we applied fMRI NF to train healthy participants to increase activity in their supplementary motor area (SMA) during a motor imagery (MI) task of complex body movements while they received a continuous visual feedback signal. This signal represented the activity of participants' localized SMA regions in the NF group and a prerecorded signal in the control group (sham feedback). In the NF group only, results showed a gradual increase in SMA-related activity across runs. This upregulation was largely restricted to the SMA, while other regions of the motor network showed no, or only marginal NF effects. In addition, we found behavioral changes, i.e., shorter reaction times in a Go/No-go task after the NF training only. These results suggest that NF can assist participants to develop greater control over a specifically targeted motor region involved in motor skill learning. The results contribute to a better understanding of the underlying mechanisms of SMA NF based on MI with a direct implication for rehabilitation of motor dysfunctions.


Subject(s)
Motor Cortex , Neurofeedback , Brain Mapping , Humans , Magnetic Resonance Imaging , Up-Regulation
20.
Front Neurogenom ; 2: 749009, 2021.
Article in English | MEDLINE | ID: mdl-38235241

ABSTRACT

EEG hyperscanning during multiuser gaming offers opportunities to study brain characteristics of social interaction under various paradigms. In this study, we aimed to characterize neural signatures and phase-based functional connectivity patterns of gaming strategies during collaborative and competitive alpha neurofeedback games. Twenty pairs of participants with no close relationship took part in three sessions of collaborative or competitive multiuser neurofeedback (NF), with identical graphical user interface, using Relative Alpha (RA) power as a control signal. Collaborating dyads had to keep their RA within 5% of each other for the team to be awarded a point, while members of competitive dyads scored points if their RA was 10% above their opponent's. Interbrain synchrony existed only during gaming but not during baseline in either collaborative or competitive gaming. Spectral analysis and interbrain connectivity showed that in collaborative gaming, players with higher resting state alpha content were more active in regulating their RA to match those of their partner. Moreover, interconnectivity was the strongest between homologous brain structures of the dyad in theta and alpha bands, indicating a similar degree of planning and social exchange. Competitive gaming emphasized the difference between participants who were able to relax and, in this way, maintain RA, and those who had an unsuccessful approach. Analysis of interbrain connections shows engagement of frontal areas in losers, but not in winners, indicating the formers' attempt to mentalise and apply strategies that might be suitable for conventional gaming, but inappropriate for the alpha neurofeedback-based game. We show that in gaming based on multiplayer non-verbalized NF, the winning strategy is dependent on the rules of the game and on the behavior of the opponent. Mental strategies that characterize successful gaming in the physical world might not be adequate for NF-based gaming.

SELECTION OF CITATIONS
SEARCH DETAIL
...