Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Glia ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023138

ABSTRACT

Myelin basic protein (Mbp) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type. In young mice, reduced Mbp mRNA levels resulted in corresponding decreases in Mbp protein accumulation and myelin sheath thickness, confirming the previously demonstrated rate-limiting role of Mbp transcription in the control of initial myelin synthesis. However, despite maintaining lower line specific Mbp mRNA levels into old age, both Mbp protein levels and myelin thickness improved or fully normalized at rates defined by the relative Mbp mRNA level. Sheath length, in contrast, was affected only when mRNA levels were very low, demonstrating that sheath thickness and length are not equally coupled to Mbp mRNA level. Striking abnormalities in sheath structure also emerged with reduced mRNA levels. Unexpectedly, an increase in the density of all glial cell types arose in response to reduced Mbp mRNA levels. This investigation extends understanding of the role Mbp plays in myelin sheath elaboration, architecture, and plasticity across the mouse lifespan and illuminates a novel axis of glial cell crosstalk.

2.
Metabolomics ; 20(4): 73, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980450

ABSTRACT

INTRODUCTION: During the Metabolomics 2023 conference, the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) presented a QA/QC workshop for LC-MS-based untargeted metabolomics. OBJECTIVES: The Best Practices Working Group disseminated recent findings from community forums and discussed aspects to include in a living guidance document. METHODS: Presentations focused on reference materials, data quality review, metabolite identification/annotation and quality assurance. RESULTS: Live polling results and follow-up discussions offered a broad international perspective on QA/QC practices. CONCLUSIONS: Community input gathered from this workshop series is being used to shape the living guidance document, a continually evolving QA/QC best practices resource for metabolomics researchers.


Subject(s)
Mass Spectrometry , Metabolomics , Quality Control , Metabolomics/methods , Metabolomics/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Mass Spectrometry/methods , Humans , Consensus , Liquid Chromatography-Mass Spectrometry
3.
Metabolomics ; 20(2): 20, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345679

ABSTRACT

BACKGROUND: Quality assurance (QA) and quality control (QC) practices are key tenets that facilitate study and data quality across all applications of untargeted metabolomics. These important practices will strengthen this field and accelerate its success. The Best Practices Working Group (WG) within the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) focuses on community use of QA/QC practices and protocols and aims to identify, catalogue, harmonize, and disseminate current best practices in untargeted metabolomics through community-driven activities. AIM OF REVIEW: A present goal of the Best Practices WG is to develop a working strategy, or roadmap, that guides the actions of practitioners and progress in the field. The framework in which mQACC operates promotes the harmonization and dissemination of current best QA/QC practice guidance and encourages widespread adoption of these essential QA/QC activities for liquid chromatography-mass spectrometry. KEY SCIENTIFIC CONCEPTS OF REVIEW: Community engagement and QA/QC information gathering activities have been occurring through conference workshops, virtual and in-person interactive forum discussions, and community surveys. Seven principal QC stages prioritized by internal discussions of the Best Practices WG have received participant input, feedback and discussion. We outline these stages, each involving a multitude of activities, as the framework for identifying QA/QC best practices. The ultimate planned product of these endeavors is a "living guidance" document of current QA/QC best practices for untargeted metabolomics that will grow and change with the evolution of the field.


Subject(s)
Data Accuracy , Metabolomics , Humans , Metabolomics/methods , Quality Control , Surveys and Questionnaires
4.
Anal Chem ; 95(51): 18645-18654, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38055671

ABSTRACT

Untargeted metabolomics is an analytical approach with numerous applications serving as an effective metabolic phenotyping platform to characterize small molecules within a biological system. Data quality can be challenging to evaluate and demonstrate in metabolomics experiments. This has driven the use of pooled quality control (QC) samples for monitoring and, if necessary, correcting for analytical variance introduced during sample preparation and data acquisition stages. Described herein is a scoping literature review detailing the use of pooled QC samples in published untargeted liquid chromatography-mass spectrometry (LC-MS) based metabolomics studies. A literature query was performed, the list of papers was filtered, and suitable articles were randomly sampled. In total, 109 papers were each reviewed by at least five reviewers, answering predefined questions surrounding the use of pooled quality control samples. The results of the review indicate that use of pooled QC samples has been relatively widely adopted by the metabolomics community and that it is used at a similar frequency across biological taxa and sample types in both small- and large-scale studies. However, while many studies generated and analyzed pooled QC samples, relatively few reported the use of pooled QC samples to improve data quality. This demonstrates a clear opportunity for the field to more frequently utilize pooled QC samples for quality reporting, feature filtering, analytical drift correction, and metabolite annotation. Additionally, our survey approach enabled us to assess the ambiguity in the reporting of the methods used to describe the generation and use of pooled QC samples. This analysis indicates that many details of the QC framework are missing or unclear, limiting the reader's ability to determine which QC steps have been taken. Collectively, these results capture the current state of pooled QC sample usage and highlight existing strengths and deficiencies as they are applied in untargeted LC-MS metabolomics.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Quality Control
5.
Metabolomics ; 19(11): 93, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940740

ABSTRACT

INTRODUCTION: The Metabolomics Quality Assurance and Quality Control Consortium (mQACC) organized a workshop during the Metabolomics 2022 conference. OBJECTIVES: The goal of the workshop was to disseminate recent findings from mQACC community-engagement efforts and to solicit feedback about a living guidance document of QA/QC best practices for untargeted LC-MS metabolomics. METHODS: Four QC-related topics were presented. RESULTS: During the discussion, participants expressed the need for detailed guidance on a broad range of QA/QC-related topics accompanied by use-cases. CONCLUSIONS: Ongoing efforts will continue to identify, catalog, harmonize, and disseminate QA/QC best practices, including outreach activities, to establish and continually update QA/QC guidelines.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Quality Control
6.
Surg Obes Relat Dis ; 19(9): 1000-1012, 2023 09.
Article in English | MEDLINE | ID: mdl-37088645

ABSTRACT

BACKGROUND: Bariatric surgery leads to profound changes in gut microbiota and dietary patterns, both of which may interact to impact gut-brain communication. Though cognitive function improves postsurgery, there is a large variability in outcomes. How bariatric surgery-induced modifications in the gut microbiota and dietary patterns influence the variability in cognitive function is still unclear. OBJECTIVES: To elucidate the associations between bariatric surgery-induced changes in dietary and gut microbiota patterns with cognition and brain structure. SETTING: University hospital. METHODS: A total of 120 adult patients (≥30 years) scheduled to undergo a primary bariatric surgery along with 60 age-, sex-, and body mass index-matched patients on the surgery waitlist will undergo assessments 3-months presurgery and 6- and 12-month postsurgery (or an equivalent time for the waitlist group). Additionally, 60 age-and sex-matched nonbariatric surgery eligible individuals will complete the presurgical assessments only. Evaluations will include sociodemographic and health behavior questionnaires, physiological assessments (anthropometrics, blood-, urine-, and fecal-based measures), neuropsychological cognitive tests, and structural magnetic resonance imaging. Cluster analyses of the dietary and gut microbiota changes will define the various dietary patterns and microbiota profiles, then using repeated measures mixed models, their associations with global cognitive and structural brain alterations will be explored. RESULTS: The coordinating study site (Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, QC, Canada), provided the primary ethical approval (Research Ethics Board#: MP-32-2022-2412). CONCLUSIONS: The insights generated from this study can be used to develop individually-targeted neurodegenerative disease prevention strategies, as well as providing critical mechanistic information.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Neurodegenerative Diseases , Adult , Humans , Infant , Diet , Brain
7.
Eur J Pharm Sci ; 172: 106144, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35158054

ABSTRACT

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the only product of the proinflammatory 5-lipoxygenase pathway with potent chemoattractant effects for human eosinophils, suggesting an important role in eosinophilic diseases such as asthma. 5-Oxo-ETE, acting through its selective OXE receptor, induces dermal eosinophilia in both humans and monkeys. To block its effects, we designed selective indole-based OXE antagonists containing hexyl (S-230) or phenylhexyl (S-C025 and S-Y048) side chains, which inhibit allergen-induced dermal and pulmonary inflammation in monkeys, suggesting that they may be useful therapeutic agents in humans. In this study we identified two metabolic pathways for the phenylhexyl-containing antagonists in liver microsomes: benzylic and N-methyl hydroxylation, resulting in ω-hydroxy, ω-oxo, and NH-containing products with reduced potencies that were identified by mass spectrometry and comparison with synthetic standards. Products of both pathways were also identified in monkey plasma following oral administration of S-C025 and S-Y025, but were less abundant than the α-hydroxy metabolites that we previously identified. Interestingly, the α-hydroxy compounds were not detected in microsomal incubations, suggesting a different origin. The relative rates of metabolism of these antagonists were S-230 >> S-C025 > S-Y048, which may help to explain the differences in their plasma half-lives (S-230 < S-C025 < S-Y048). In conclusion, S-C025 and S-Y048 are metabolized by liver microsomes by benzylic and N-methyl hydroxylation but not by α-hydroxylation, whereas all three pathways exist in vivo. Addition of a phenyl group to the hexyl side chain of these antagonists dramatically reduced their rates of metabolism, which would explain their prolonged in vivo half-lives.


Subject(s)
Eosinophils , Receptors, Eicosanoid , Animals , Anti-Inflammatory Agents/pharmacology , Chemotactic Factors/pharmacology , Haplorhini/metabolism
8.
J Chromatogr A ; 1638: 461862, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33433374

ABSTRACT

This work presents an evaluation of solid-phase microextraction (SPME) SPME in combination with liquid chromatography-high resolution mass spectrometry (LC-HRMS) as an analytical approach for untargeted brain analysis. The study included a characterization of the metabolite coverage provided by C18, mixed-mode (MM, with benzene sulfonic acid and C18 functionalities), and hydrophilic lipophilic balanced (HLB) particles as sorbents in SPME coatings after extraction from cow brain homogenate at static conditions. The effects of desorption solvent, extraction time, and chromatographic modes on the metabolite features detected were investigated. Method precision and absolute matrix effects were also assessed. Among the main findings of this work, it was observed that all three tested coating chemistries were able to provide comparable brain tissue information. HLB provided higher responses for polar metabolites; however, as these fibers were prepared in-house, higher inter-fiber relative standard deviations were also observed. C18 and HLB coatings offered similar responses with respect to lipid-related features, whereas MM and C18 provided the best results in terms of method precision. Our results also showed that the use of methanol is essential for effective desorption of non-polar metabolites. Using a reversed-phase chromatographic method, an average of 800 and 1200 brain metabolite features detected in positive and negative modes, respectively, met inter-fibre RSD values below 30% (n=4) after removal of fibre and solvent artefacts from the associated datasets. For features detected using a lipidomics method, a total of 900 and 1800 features detected using C18 fibers in positive and negative mode, respectively, met the same criteria. In terms of absolute matrix effects, the majority of the model metabolites tested showed values between 80 and 120%, which are within the acceptable range. Overall, the findings of this work lay the foundation for further optimization of parameters for SPME-LC-HRMS methods suitable for in vivo and ex vivo brain (and other tissue) untargeted studies, and support the applicability of this approach for non-destructive tissue metabolomics.


Subject(s)
Brain/metabolism , Chromatography, Liquid , Mass Spectrometry , Solid Phase Microextraction , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Metabolomics/methods , Solvents/chemistry , Specimen Handling
9.
Metabolomics ; 16(10): 113, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33044703

ABSTRACT

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics. OBJECTIVES: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics. METHODS: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories. This sharing was enabled via a six-page questionnaire composed of over 120 questions and comment fields which was developed as part of this work and has proved the basis for ongoing mQACC outreach. RESULTS: For QA, many laboratories reported documenting maintenance, calibration and tuning (82%); having established data storage and archival processes (71%); depositing data in public repositories (55%); having standard operating procedures (SOPs) in place for all laboratory processes (68%) and training staff on laboratory processes (55%). For QC, universal practices included using system suitability procedures (100%) and using a robust system of identification (Metabolomics Standards Initiative level 1 identification standards) for at least some of the detected compounds. Most laboratories used QC samples (>86%); used internal standards (91%); used a designated analytical acquisition template with randomized experimental samples (91%); and manually reviewed peak integration following data acquisition (86%). A minority of laboratories included technical replicates of experimental samples in their workflows (36%). CONCLUSIONS: Although the 23 contributors were researchers with diverse and international backgrounds from academia, industry and government, they are not necessarily representative of the worldwide pool of practitioners due to the recruitment method for participants and its voluntary nature. However, both questionnaire and the findings presented here have already informed and led other data gathering efforts by mQACC at conferences and other outreach activities and will continue to evolve in order to guide discussions for recommendations of best practices within the community and to establish internationally agreed upon reporting standards. We very much welcome further feedback from readers of this article.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Humans , Laboratories , Quality Control , Research Design , Surveys and Questionnaires
10.
Anal Bioanal Chem ; 412(7): 1639-1652, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32016570

ABSTRACT

The ratio between reduced and oxidized thiols, mainly glutathione and oxidized glutathione, is one of the biomarkers for the evaluation of oxidative stress. The accurate measurement of thiol concentrations is challenging because reduced thiols are easily oxidized during sample manipulation. Derivatization is commonly used to protect thiols from oxidation. The objective of this work was to systematically compare two cell-permeable derivatizing agents: N-ethyl maleimide (NEM) and (R)-(+)-N-(1-phenylethyl)maleimide (NPEM) in terms of derivatization efficiency, ionization enhancement, side product formation, reaction selectivity for thiols, pH dependence of the reaction, and derivative stability. All thiol measurements and the characterization of side products were performed using a biphenyl reversed phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Four thiols, cysteine (CYS), homocysteine, N-acetylcysteine (NAC), and glutathione (GSH), were used for the evaluation. Using 1:10 ratio of thiol:derivatizing agent, complete derivatization was obtained within 30 min for both agents tested with the exception of CYS-NEM, where 97% efficiency was obtained. The more hydrophobic NPEM provided better ionization of the thiols, with enhancement ranging from 2.1x for GSH to 5.7x for CYS in comparison to NEM. NPEM derivatization led to more extensive side reactions, such as double derivatization and ring opening, which hindered the accurate measurement of the thiol concentrations. Both NEM and NPEM also showed poor stability of CYS derivative due to its time-dependent conversion to cyclic cysteine-maleimide derivative. Both reagents also showed significant reactivity with amine-containing metabolites depending on the pH used during derivatization, but overall NEM was found to be more selective towards thiol group than NPEM. Taking into account all evaluation criteria, NEM was selected as a more suitable reagent for the thiol protection and derivatization, but strict control of pH 7.0 is recommended to minimize the side reactions. This work illustrates the importance of the characterization of side products and derivative stability during the evaluation of thiol derivatizing agents and contributes fundamental understanding to improve the accuracy of thiol determinations. The key sources of errors during maleimide derivatization include the derivatization of amine-containing metabolites, poor derivative stability of certain thiols (CYS and NAC), and the side reactions especially if ring opening of the reagent is not minimized. Graphical abstract.


Subject(s)
Chromatography, Liquid/methods , Ethylmaleimide/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Sulfhydryl Compounds/chemistry , Cyclization , Hydrogen-Ion Concentration
11.
Br J Pharmacol ; 177(2): 388-401, 2020 01.
Article in English | MEDLINE | ID: mdl-31655025

ABSTRACT

BACKGROUND AND PURPOSE: The 5-lipoxygenase product 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), acting through the OXE receptor, is a potent eosinophil chemoattractant that may be an important proinflammatory mediator in eosinophilic diseases such as asthma. We previously identified a series of indole-based OXE receptor antagonists that rapidly appear in the blood following oral administration but have limited lifetimes. The objective of this study was to increase the potency and plasma half-lives of these compounds and thereby identify the optimal candidate for future preclinical studies in monkeys, as rodents do not have an OXE receptor orthologue. EXPERIMENTAL APPROACH: We synthesized a series of substituted phenylalkyl indoles and compared their antagonist potencies, pharmacokinetics, and metabolism to those of our earlier compounds. The potencies of some of their metabolites were also investigated. KEY RESULTS: Among the compounds tested, the S-enantiomer of the m-chlorophenyl compound (S-Y048) was the most potent, with an pIC50 of about 10.8 for inhibition of 5-oxo-ETE-induced calcium mobilization in human neutrophils. When administered orally to cynomolgus monkeys, S-Y048 rapidly appeared in the blood and had a half-life in plasma of over 7 hr, considerably longer than any of the other OXE analogues tested. A major hydroxylated metabolite, with a potency close to that of its precursor, was identified in plasma. CONCLUSION AND IMPLICATIONS: Because of its highly potent antagonist activity and its long lifetime in vivo, S-Y048 may be a useful anti-inflammatory agent for the treatment of eosinophilic diseases such as asthma, allergic rhinitis, and atopic dermatitis.


Subject(s)
Anti-Allergic Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacokinetics , Indoles/pharmacokinetics , Neutrophils/drug effects , Receptors, Eicosanoid/antagonists & inhibitors , Activation, Metabolic , Administration, Oral , Animals , Anti-Allergic Agents/blood , Anti-Allergic Agents/chemical synthesis , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/chemical synthesis , Calcium/metabolism , Female , Half-Life , Humans , Hydroxylation , Indoles/blood , Indoles/chemical synthesis , Macaca fascicularis , Neutrophils/metabolism , Receptors, Eicosanoid/metabolism , Structure-Activity Relationship
12.
Angew Chem Int Ed Engl ; 59(6): 2392-2398, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31697450

ABSTRACT

Oxylipins are key lipid mediators of important brain processes, including pain, sleep, oxidative stress, and inflammation. For the first time, an in-depth profile of up to 52 oxylipins can be obtained from the brains of awake moving animals using in vivo solid-phase microextraction (SPME) chemical biopsy tool in combination with liquid chromatography-high resolution mass spectrometry. Among these, 23 oxylipins are detectable in the majority of healthy wildtype samples. This new approach successfully eliminates the changes in oxylipin concentrations routinely observed during the analysis of post-mortem samples, allows time-course monitoring of their concentrations with high spatial resolution in specific brain regions of interest, and can be performed using the same experimental set-up as in vivo microdialysis (MD) thus providing a new and exciting tool in neuroscience and drug discovery.


Subject(s)
Brain/metabolism , Oxylipins/analysis , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Cluster Analysis , Oxylipins/chemistry , Oxylipins/isolation & purification , Rats , Solid Phase Microextraction , Wakefulness
13.
J Chromatogr A ; 1608: 460419, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31439439

ABSTRACT

To increase metabolome coverage in global LC-MS metabolomics, often both reversed-phase liquid chromatography (RPLC) and hydrophilic-interaction liquid chromatography (HILIC) are implemented in parallel. However, there is a lack of consensus in the literature on the best HILIC stationary phase to employ for global metabolomics of human biological fluids. The objective of this study was to compare in detail the performance of two commonly employed HILIC phases: zwitterionic sulfobetaine ZIC-HILIC stationary phase and an underivatized silica HILIC stationary phase. During method development, the effect of salt concentration in the mobile phase was also investigated, and 5 mM ammonium acetate was selected. The stationary phases were evaluated using a mixture of 37 polar standards covering a range of logP values (-10 to 3.73), molecular weights (59-776 Da), charges (15 anions, 11 cations, and 11 neutral) as well as 17 lipid standards to understand phospholipid behaviour on the two stationary phases. The criteria used for the comparison included the quality of the chromatographic peak shape, adequate analyte retention, peak separation capability, and metabolite coverage. The zwitterionic ZIC-HILIC column provided better chromatographic performance over the silica stationary phase with 14 standards achieving good quality peaks compared to the 7 with the silica column. Only 2 standards were undetected with the ZIC-HILIC column compared to the 14 undetected with the silica column. In human plasma, 1966 and 1650 metabolites were observed on the ZIC-HILIC column in positive and negative electrospray ionization (ESI) respectively. On the silica HILIC column, 1773 and 2028 metabolites were observed in positive and negative ESI respectively, showing comparable performance of the two phases. Next, the effect of adding 10 mM ammonium phosphate to the samples to improve the analyte peak shape and metabolite coverage was investigated for both ZIC-HILIC and silica HILIC. In contrast with recently reported results for pZIC-HILIC, there was no clear evidence that ammonium phosphate addition was beneficial for human plasma samples. In conclusion, ZIC-HILIC provided better chromatographic performance for polar plasma metabolomics than underivatized silica in terms of chromatographic peak shape and chromatographic resolution, while maintaining comparable metabolite coverage. The addition of ammonium phosphate to human plasma was not beneficial for either of the two stationary phases.


Subject(s)
Chromatography, Liquid/instrumentation , Plasma/chemistry , Betaine/analogs & derivatives , Betaine/chemistry , Chromatography, Liquid/methods , Chromatography, Reverse-Phase , Humans , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry/methods , Metabolome , Metabolomics/instrumentation , Metabolomics/methods , Phosphates/chemistry , Silicon Dioxide/chemistry
14.
Toxins (Basel) ; 11(8)2019 07 24.
Article in English | MEDLINE | ID: mdl-31344861

ABSTRACT

Routine mycotoxin biomonitoring methods do not include many mycotoxin phase I and phase II metabolites, which may significantly underestimate mycotoxin exposure especially for heavily metabolized mycotoxins. Additional research efforts are also needed to measure metabolites in vivo after exposure and to establish which mycotoxin metabolites should be prioritized for the inclusion during large-scale biomonitoring efforts. The objective of this study was to perform human in vitro microsomal incubations of 17 mycotoxins and systematically characterize all resulting metabolites using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The results obtained were then used to build a comprehensive LC-MS library and expand a validated 17-mycotoxin method for exposure monitoring to screening of additional 188 metabolites, including 100 metabolites reported for the first time. The final method represents one of the most comprehensive LC-HRMS methods for mycotoxin biomonitoring or metabolism/fate studies.


Subject(s)
Glucuronides/metabolism , Microsomes, Liver/metabolism , Mycotoxins/metabolism , Chromatography, Liquid , Humans , Mass Spectrometry
15.
J Med Chem ; 61(14): 5934-5948, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29972644

ABSTRACT

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent lipid mediator that induces tissue eosinophilia via the selective OXE receptor (OXE-R), which is an attractive therapeutic target in eosinophilic diseases. We previously identified indole OXE-R antagonists that block 5-oxo-ETE-induced primate eosinophil activation. Although these compounds possess good oral absorption, their plasma levels decline rapidly due to extensive oxidation of their hexyl side chain. We have now succeeded in dramatically increasing antagonist potency and resistance to metabolism by replacing the hexyl group with phenylpentyl or phenylhexyl side chains. Compared with our previous lead compound S-230, our most potent antagonist, S-C025, has an IC50 (120 pM) over 80 times lower and a substantially longer plasma half-life. A single major metabolite, which retains antagonist activity (IC50, 690 pM) and has a prolonged lifetime in plasma was observed. These new highly potent OXE-R antagonists may provide a novel strategy for the treatment of eosinophilic disorders like asthma.


Subject(s)
Arachidonic Acids/antagonists & inhibitors , Chemotactic Factors/antagonists & inhibitors , Granulocytes/cytology , Granulocytes/drug effects , Pentanoic Acids/pharmacology , Receptors, Eicosanoid/antagonists & inhibitors , Animals , Calcium/metabolism , Female , Humans , Inhibitory Concentration 50 , Macaca fascicularis , Pentanoic Acids/chemistry , Pentanoic Acids/metabolism , Pentanoic Acids/pharmacokinetics , Stereoisomerism , Tissue Distribution
16.
Chem Commun (Camb) ; 54(50): 6728-6749, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29888773

ABSTRACT

This Feature Article highlights some of the key challenges within the field of metabolomics and examines what role separation and analytical sciences can play to improve the use of metabolomics in biomarker discovery and personalized medicine. Recent progress in four key areas is highlighted: (i) improving metabolite coverage, (ii) developing accurate methods for unstable metabolites including in vivo global metabolomics methods, (iii) advancing inter-laboratory studies and reference materials and (iv) improving data quality, standardization and quality control of metabolomics studies.


Subject(s)
Biomarkers/blood , Data Accuracy , Metabolome , Metabolomics , Animals , Chromatography, Liquid/methods , Humans , Mass Spectrometry/methods , Multicenter Studies as Topic , Plants
18.
J Chromatogr A ; 1548: 51-63, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29576275

ABSTRACT

Mycotoxins are secondary metabolites produced by filamentous fungi. Primary route of human exposure to mycotoxins is the intake of the contaminated food. Minimizing mycotoxin exposure is important for population health, as their chronic toxic effects have been associated with kidney and liver diseases, some types of cancer and immunosuppression. The objective of this work was to develop and validate a multi-class mycotoxin method suitable for exposure monitoring of mycotoxins in human plasma. A sensitive liquid chromatography - mass spectrometry method was developed for 17 mycotoxins: nivalenol (NIV), deoxynivalenol, fusarenon X, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, zearalenone, α-zearalenol (α-ZOL), ß-zearalenol, zearalanone, α-zeranol and, and ß-zeranol. The method relies on three-step liquid-liquid extraction with ethyl acetate to eliminate the need for immunoaffinity extraction and minimize ionization matrix effects. Chromatographic separation of mycotoxins, including all isomers, was achieved with pentafluorophenyl column and water/methanol mobile phase. Mycotoxin detection and quantitation were performed using high-resolution mass spectrometry on LTQ Velos Orbitrap, in both positive and negative electrospray ionization (ESI(+) and (ESI(-)). The use of 0.02% acetic acid as mobile phase additive for ESI(-) resulted in significant increase in ionization efficiency ranging from 1.7 to 26 times for mycotoxins that ionize better in ESI(-). The optimized method was validated according to FDA guidance procedures. LOQs of all mycotoxins ranged from 0.1 to 0.5 ng/ml, except NIV which resulted in LOQ of 3 ng/ml because of low extraction recovery of this highly polar mycotoxin. Mean intra-day accuracy ranged from 85.8% to 116.4%, and intra-day precision (n = 6) ranged from 1.6% to 12.5% RSD for all mycotoxins except α-ZOL where mean accuracy ranged from 72.9% to 97.2%. Inter-day accuracy and precision were 85.6%-111.5% and 2.7-15.6% RSD respectively, showing good analytical performance of the method for biomonitoring.


Subject(s)
Chromatography, Liquid/methods , Mycotoxins/blood , Tandem Mass Spectrometry/methods , Humans , Limit of Detection , Liquid-Liquid Extraction , Reproducibility of Results
19.
Eur J Pharm Sci ; 115: 88-99, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29339225

ABSTRACT

We previously identified the indole 264 as a potent in vitro antagonist of the human OXE receptor that mediates the actions of the powerful eosinophil chemoattractant 5-oxo-ETE. No antagonists of this receptor are currently commercially available or are being tested in clinical studies. The lack of a rodent ortholog of the OXE receptor has hampered progress in this area because of the unavailability of commonly used mouse or rat animal models. In the present study, we examined the feasibility of using the cynomolgus monkey as an animal model to investigate the efficacy of orally administered 264 in future in vivo studies. We first confirmed that 264 is active in monkeys by showing that it is a potent inhibitor of 5-oxo-ETE-induced actin polymerization and chemotaxis in granulocytes. The major microsomal metabolites of 264 were identified by cochromatography with authentic chemically synthesized standards and LC-MS/MS as its ω2-hydroxy and ω2-oxo derivatives, formed by ω2-oxidation of its hexyl side chain. Small amounts of ω1-oxidation products were also identified. None of these metabolites have substantial antagonist potency. High levels of 264 appeared rapidly in the blood following oral administration to both rats and monkeys, and declined to low levels by 24 h. As with microsomes, its major plasma metabolites in monkeys were ω2-oxidation products. We conclude that the monkey is a suitable animal model to investigate potential therapeutic effects of 264. This, or a related compound with diminished susceptibility to ω2-oxidation, could be a useful therapeutic agent in eosinophilic disorders such as asthma.


Subject(s)
Arachidonic Acids/pharmacology , Chemotactic Factors/pharmacology , Eosinophils/drug effects , Indoles/pharmacokinetics , Receptors, Eicosanoid/antagonists & inhibitors , Administration, Oral , Animals , Chemotaxis/drug effects , Eosinophils/metabolism , Female , Granulocytes/drug effects , Granulocytes/metabolism , Haplorhini , Male , Microsomes/drug effects , Microsomes/metabolism , Oxidation-Reduction/drug effects , Rats
20.
Rapid Commun Mass Spectrom ; 32(3): 201-211, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29105990

ABSTRACT

RATIONALE: Mobile-phase additives in liquid chromatography/mass spectrometry (LC/MS) are used to improve peak shape, analyte ionization efficiency and method coverage. Both basic and acidic mobile phases have been used successfully for negative electrospray ionization (ESI), but very few systematic investigations exist to date to justify the choice of mobile phase. Acetic acid was previously shown to improve ionization in untargeted metabolomics of urine, but has not been investigated in lipidomics. The goal of this study was to systematically compare the performance of acetic acid to that of other commonly employed additives in negative LC/ESI-MS lipidomics. METHODS: The performance of acetic acid was compared to that of commonly used mobile-phase additives in lipidomics, namely ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide, using lipid standard solutions containing representatives of major mammalian lipid subclasses and isopropanol-precipitated human plasma. This design allowed comparison of the influence of additive and additive concentration on lipid signal intensity, lipid peak shape and lipid coverage in both simple and complex biological matrices using both Orbitrap and quadrupole time-of-flight MS platforms with different ESI source designs. RESULTS: Ammonium hydroxide caused 2- to 1000-fold signal suppression of all lipid classes in comparison to acetic acid. In comparison to ammonium acetate, acetic acid increased lipid signal intensity from 2- to 19-fold for 11 lipid subclasses, and decreased ionization efficiency only for ceramide and phosphatidylcholine lipid classes which can be effectively ionized in positive ESI mode. The improved ionization efficiency using acetic acid also increased lipid coverage by 21-50% versus ammonium acetate additive. CONCLUSIONS: Acetic acid at a concentration of 0.02% (v/v) is the suggested choice as a mobile-phase additive for lipidomics and targeted lipid profiling with negative LC/ESI-MS based on signal enhancement and improved lipid coverage compared to ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide mobile phases.


Subject(s)
Acetic Acid/chemistry , Blood Chemical Analysis/methods , Chromatography, Liquid/methods , Lipids/blood , Spectrometry, Mass, Electrospray Ionization/methods , Acetates/chemistry , Ammonium Hydroxide/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...