Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Haematologica ; 97(9): 1405-13, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22491738

ABSTRACT

BACKGROUND: PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. DESIGN AND METHODS: The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. RESULTS: PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). CONCLUSIONS: PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors.


Subject(s)
Chromosome Aberrations , Mutation/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-akt/genetics , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child , Child, Preschool , Cohort Studies , Comparative Genomic Hybridization , DNA, Neoplasm/genetics , Female , Follow-Up Studies , Humans , Infant , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Receptor, Notch1/genetics , Survival Rate
2.
Haematologica ; 97(2): 258-61, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22058201

ABSTRACT

Translocation of the LYL1 oncogene are rare in T-cell acute lymphoblastic leukemia, whereas the homologous TAL1 gene is rearranged in approximately 20% of patients. Previous gene-expression studies have identified an immature T-cell acute lymphoblastic leukemia subgroup with high LYL1 expression in the absence of chromosomal aberrations. Molecular characterization of a t(7;19)(q34;p13) in a pediatric T-cell acute lymphoblastic leukemia patient led to the identification of a translocation between the TRB@ and LYL1 loci. Similar to incidental T-cell acute lymphoblastic leukemia cases with synergistic, double translocations affecting TAL1/2 and LMO1/2 oncogenes, this LYL1-translocated patient also had an LMO2 rearrangement pointing to oncogenic cooperation between LYL1 and LMO2. In hierarchical cluster analyses based on gene-expression data, this sample consistently clustered along with cases having TAL1 or LMO2 rearrangements. Therefore, LYL1-rearranged cases are not necessarily associated with immature T-cell development, despite high LYL1 levels, but elicit a TALLMO expression signature.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , LIM Domain Proteins/genetics , Neoplasm Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins/genetics , Translocation, Genetic/genetics , Child , Cluster Analysis , Humans , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured
3.
PLoS One ; 3(8): e3007, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-18688287

ABSTRACT

BACKGROUND: Identification of genes that are causally implicated in oncogenesis is a major goal in cancer research. An estimated 10-20% of cancer-related gene mutations result in skipping of one or more exons in the encoded transcripts. Here we report on a strategy to screen in a global fashion for such exon-skipping events using PAttern based Correlation (PAC). The PAC algorithm has been used previously to identify differentially expressed splice variants between two predefined subgroups. As genetic changes in cancer are sample specific, we tested the ability of PAC to identify aberrantly expressed exons in single samples. PRINCIPAL FINDINGS: As a proof-of-principle, we tested the PAC strategy on human cancer samples of which the complete coding sequence of eight cancer genes had been screened for mutations. PAC detected all seven exon-skipping mutants among 12 cancer cell lines. PAC also identified exon-skipping mutants in clinical cancer specimens although detection was compromised due to heterogeneous (wild-type) transcript expression. PAC reduced the number of candidate genes/exons for subsequent mutational analysis by two to three orders of magnitude and had a substantial true positive rate. Importantly, of 112 randomly selected outlier exons, sequence analysis identified two novel exon skipping events, two novel base changes and 21 previously reported base changes (SNPs). CONCLUSIONS: The ability of PAC to enrich for mutated transcripts and to identify known and novel genetic changes confirms its suitability as a strategy to identify candidate cancer genes.


Subject(s)
Breast Neoplasms/genetics , Exons/genetics , Genes, Neoplasm , Base Sequence , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Female , Gene Expression , Gene Expression Profiling , Genetics, Population , Humans , Oligonucleotide Array Sequence Analysis , PTEN Phosphohydrolase/genetics , Polymorphism, Single Nucleotide , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...