Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 122(2): 151502, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31932064

ABSTRACT

Vitamin D is a steroid hormone with numerous actions in the organism. There are strong evidences that relate vitamin D deficiency with liver lipid metabolism disturbances, but the mechanism of this action is still unknown. In our previous work we postulated the localization and accumulation of vitamin D receptor (VDR) in membrane of the lipid droplets (LDs) in hepatocytes. In this study, we applied the transmission electron microscopy (TEM) to confirm this hypothesis by using a long-term (6 months) high sucrose intake rat model that was previously found to be appropriate for research of the hepatic lipid accumulation. In addition to the VDR, we also found key vitamin D metabolizing enzymes, 1α-hydroxylase and CYP 24 associated with the membrane of the LDs. A light-microscopy data revealed significant increase in expression of VDR and CYP 24 in liver of high-sucrose treated rats, in comparison to controlones. According to the best of our knowledge, this is a first study confirming the presence of the VDR in the membrane of the LDs in general and also in particular in LDs of the hepatocytes that were accumulated as a consequence of the prolonged high sucrose intake. Moreover, we found association of main vitamin D metabolizing enzymes with LD membrane. These results provide a new insight in the possible relation of vitamin D signalling system with LD morphology and function and with the lipid metabolism in general.


Subject(s)
Hepatocytes/ultrastructure , Lipid Droplets/ultrastructure , Lipids , Receptors, Calcitriol/ultrastructure , Animals , Fatty Liver/pathology , Hepatocytes/metabolism , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Liver/pathology , Male , Rats, Wistar , Receptors, Calcitriol/metabolism , Vitamin D/metabolism
2.
Article in English | MEDLINE | ID: mdl-28088289

ABSTRACT

We studied the influence of sucrose in drinking water on liver histology, fatty acid profile and lipogenic genes expression in rats maintained on high-fiber. The experimental groups were: control group (water) and sucrose group (sucrose solution in drinking water, 30% w/v). Liver histology of sucrose treated rats revealed steatosis and increased number of αSMA immunoreactive cells without the signs of fibrosis. Sucrose treatment increased de novo lipogenesis, lipid peroxidation and MUFA content and decreased PUFA content, C18:2n6 and C20:4n6 content in total phospholipids and phosphatidylethanolamine and C18:2n6 content in cardiolipin. RT-qPCR revealed increase in Δ-9-desaturase and SREBP1c gene expression and decrease in the Δ-5-desaturase and elongase 5 expression. Treatment with sucrose extensively changes fatty acid composition of hepatic lipid and phospholipid classes including cardiolipin, increases oxidative stress and causes pathological changes in liver in rats maintained on high-fiber diet.


Subject(s)
Diet, High-Fat/adverse effects , Drinking Water/chemistry , Gene Regulatory Networks/drug effects , Lipogenesis/drug effects , Liver/pathology , Sucrose/administration & dosage , Actins/metabolism , Animals , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Fatty Acids/analysis , Gene Expression Regulation/drug effects , Lipid Peroxidation , Liver/drug effects , Male , Oxidative Stress , Rats , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Proteins/genetics
3.
Neuropeptides ; 62: 57-64, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27836326

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) influences the trigeminal nerve function by changing the pain response and transduction of the orofacial sensory pathways. It affects the inflammatory response via neuropeptide Y (NPY) and vascular endothelial growth factor (VEGF), which could potentially have a relevant role in the pathophysiology of diabetic neuropathy. The aim was to investigate expression of VEGF and NPY in subpopulations of trigeminal ganglion (TG) neurons in rat models of early DM1 and DM2. METHODS: DM1 model was induced by an intraperitoneal (i.p.) injection of streptozotocin (STZ) (55mg/kg). DM2 rats were fed with a high fat diet (HFD) for two weeks and then received 35mg/kg of STZ i.p. Two weeks and 2months after the STZ-diabetes induction, rats were sacrificed and TG was immunohistochemically analyzed for detection of VEGF and NPY expression, and also double immunofluorescence labeling with isolectin (IB4) was completed. RESULTS: An increased percentage of NPY+ neurons was observed 2weeks after DM1 and 2months post DM2 induction. NPY immunoreactivity was restricted to IB4-negative small-diameter and IB4+ neurons. Two weeks post induction, DM1 rats showed an increased percentage of VEGF/IB4- large neurons and DM2 rats showed an increased percentage of VEGF/IB4+ neurons. Two months after DM induction, the DM1 group showed a reduced percentage of VEGF/IB4- small neurons. CONCLUSION: The observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The results contribute to the understanding of the basic pathophysiology of trigeminal diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Trigeminal Ganglion/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Male , Rats, Sprague-Dawley
4.
Acta Histochem ; 118(5): 486-95, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27173620

ABSTRACT

Association of liver calcitriol (active vitamin D metabolite) catabolism with osteomalacia during prolonged use of certain drugs was reported in several recent studies. To examine whether the increased calcitriol catabolism could be a potential link between ageing/diabetes mellitus (DM) and bone loss, we studied the dynamic of expression of CYP24, the main calcitriol catabolising enzyme in the liver of rats during ageing and a long-term experimental DM1. DM1 model was induced with intraperitoneally injected streptozotocin (STZ) (55mg/kg). Sprague-Dawley rats were sacrificed 6 and 12 months after the DM1 induction. The immunohistochemical analyses of CYP24 and transforming growth factor ß 1 (TGF-ß1) expression in the liver were performed. We found that ageing and long-term DM1 resulted in a significantly increased expression of CYP24 in hepatocytes, as well as in non-hepatocyte liver cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells). Ageing and long-term DM1 resulted in an increased expression of TGF-ß1 as well. Expression of CYP24 coexisted with the expression of TGF-ß1 in all types of hepatic cells. We concluded that liver has the capacity for an active vitamin D catabolism in different populations of liver cells, especially in sinusoidal endothelial cells, through an expression of CYP24. That capacity is substantially increased during ageing and long-term diabetes mellitus. Increased liver calcitriol catabolism could be one of the mechanisms of the bone metabolism impairment related to ageing and diabetes.


Subject(s)
Aging/metabolism , Cytochrome P450 Family 24/metabolism , Diabetes Mellitus, Experimental/enzymology , Liver/enzymology , Animals , Liver/pathology , Male , Rats, Sprague-Dawley , Transforming Growth Factor beta1/physiology , Vitamin D/metabolism
5.
Exp Gerontol ; 72: 167-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26471398

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Aging , Diabetes Mellitus/metabolism , Hepatocytes/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction , Animals , Diabetes Mellitus/chemically induced , Disease Models, Animal , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
6.
J Chem Neuroanat ; 64-65: 12-9, 2015.
Article in English | MEDLINE | ID: mdl-25701274

ABSTRACT

The activity of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The aim of this study was to investigate the immunoreactivity of phosphorylated CaMKIIα (pCaMKIIα) in subpopulations of trigeminal ganglion (TG) neurons in rat models of early diabetes type 1 (dm1) and 2 (dm2). DM1 model was induced with intraperitoneally (i.p.) injected streptozotocin (STZ) (55mg/kg). DM2 rats were fed with the high fat diet (HFD) for 2 weeks and then received 35mg/kg of STZ i.p. Two weeks and 2 months after the STZ-diabetes induction, rats were sacrificed and immunohistochemical analysis for detection of pCaMKIIα immunoreactivity and double immunofluorescence labelling with isolectin (IB4) was performed. Increased intensity of pCaMKIIα immunofluorescence, restricted to IB4-negative small-diameter neurons, was seen in TG neurons two months after STZ-DM1 induction. DM1 model, as well as the obesity (control dm2 groups) resulted in neuronal impaired growth while dm2 model led to neuron hypertrophy in TG. Observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. In future, innovative strategies for modulation of CaMKIIα activity in specific subpopulations of neurons could be a novel approach in therapy of diabetic trigeminal neuropathy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis , Diabetes Mellitus, Experimental/metabolism , Trigeminal Ganglion/enzymology , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Fluorescent Antibody Technique , Glycoproteins/metabolism , Lectins/metabolism , Male , Neurons/pathology , Rats , Rats, Sprague-Dawley , Versicans
7.
Neuropeptides ; 48(6): 353-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25278090

ABSTRACT

PTHrP and its receptor PTHR1 are found in the CNS and peripheral nervous system. The presence of PTHrP mRNA has been detected in the superior cervical ganglion (SCG), but there are no data on the cellular distribution of PTHrP and PTHR1 in the SCG. Although it is known that ovarian activity and reproductive status influence sympathetic activity, and the PTHrP/PTHR1 system is influenced by estrogens in different tissues, it is not known whether these factors have a similar effect on expression of PTHrP and PTHR1 in the nervous system. Hence, we investigated the presence and distribution of PTHrP and PTHR1 in neurons and glia of the SCG of rats, as well as the influence of ovariectomy on their expression, by using immunohistochemistry. PTHrP and PTHR1 immunoreactivity was observed in cytoplasm as well as in nuclei of almost all neurons in the SCG. In male rats, intensity of PTHrP fluorescence was significantly higher in cytoplasm of NPY-, in comparison to NPY+ neurons (p < 0.05). In female rats, 2 months post-ovariectomy, significantly lower intensity of PTHrP fluorescence in cytoplasm of the SCG neurons was observed in comparison to sham operated animals (p < 0.05). In addition to neurons, PTHrP and PTHR1 immunoreactivity was observed in most of the glia and was not influenced by ovariectomy. Results show the expression of PTHrP and its receptor, PTHR1, in the majority of neurons and glial cells in the SCG of rats. Expression of PTHrP, but not PTHR1 in the cytoplasm of SCG neurons is influenced by ovarian activity.


Subject(s)
Parathyroid Hormone-Related Protein/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Superior Cervical Ganglion/metabolism , Animals , Cytoplasm/metabolism , Female , Male , Neuroglia/metabolism , Neurons/metabolism , Ovariectomy , Rats , Rats, Sprague-Dawley , Superior Cervical Ganglion/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...