Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 10: 520, 2019.
Article in English | MEDLINE | ID: mdl-30941075

ABSTRACT

Many quarters of forensic science use reporting formats such as "identification," "inconclusive," and "exclusion." These types of conclusions express opinions as to whether or not a particular person or object is the source of the material or traces of unknown source that is of interest in a given case. Rendering an "inconclusive" conclusion is sometimes criticized as being inadequate because-supposedly-it does not provide recipients of expert information with helpful directions. In this paper, we critically examine this claim using decision theory. We present and defend the viewpoint according to which deciding to render an "inconclusive" conclusion is, on a formal account, not as inadequate as may commonly be thought. Using elements of decision theory from existing accounts on the topic, we show that inconclusive conclusions can actually be viable alternatives with respect to other types of conclusions, such as "identification."

3.
Forensic Sci Int ; 281: e24-e29, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29162298

ABSTRACT

Forensic age estimation, a branch of forensic science, has received renewed attention lately mainly due to societal migration phenomena. And yet, the interpretation of age-related evidence is still largely neglected as a field, the literature being usually limited to technical discussions strictly pertaining to the statistical methodologies to be used in estimation process. This short communication aims to highlight the fundamental role of evidence evaluation and interpretation in forensic age estimation. We illustrate why the Bayesian approach represents the best choice in such a perspective.


Subject(s)
Age Determination by Skeleton , Age Determination by Teeth , Bayes Theorem , Forensic Sciences , Likelihood Functions , Humans
4.
Front Genet ; 7: 215, 2016.
Article in English | MEDLINE | ID: mdl-28018424

ABSTRACT

When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as "the person of interest is the source of the crime stain." In particular, when the alternative proposition is "an unknown person is the source of the crime stain," one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question "whose DNA is this?" to the question "how did it get there?" As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court.

7.
Forensic Sci Int Genet ; 7(4): 467-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23623242

ABSTRACT

This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during the analysis of a stain, relevant from the point of view of a Court of Justice? This question relates to skeptical views previously voiced by commentators mainly in the judicial area, but is avoided by a large majority of forensic scientists. Notwithstanding, the pivotal role of this question has recently been evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly that a huge gap still exists between questions lawyers are actually interested in, and the answers that scientists deliver to Courts in written reports or during oral testimony. Participants in the justice system, namely lawyers and jurors on the one hand and forensic geneticists on the other, unfortunately talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases. This paper intends to emphasize the actuality of this topic and suggest beneficial ways ahead towards a more reasoned use of forensic DNA in criminal proceedings.


Subject(s)
DNA/genetics , Forensic Anthropology , Forensic Genetics , Humans
8.
Investig Genet ; 3(1): 16, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22849390

ABSTRACT

BACKGROUND: The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. METHODS: As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. RESULTS: This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. CONCLUSIONS: The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...