Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(14): 16992-7006, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23938548

ABSTRACT

We propose two distinctive designs of metamaterials demonstrating filtering functions in the visible and near infrared region. Since the emissivity is related to the absorption of a material, these filters would then offer a high emissivity in the visible and near infrared, and a low one beyond those wavelengths. Usually, such a system find their applications in the thermo-photovoltaics field as it can find as well a particular interest in optoelectronics, especially for optical detection. Numerical analysis has been performed on common metamaterial designs: a perforated metallic plate and a metallic cross grating. Through all these structures, we have demonstrated the various physical phenomena contributing to a reduction in the reflectivity in the optical and near infrared region. By showing realistic geometric parameters, the structures were not only designed to demonstrate an optical filtering function but were also meant to be feasible on large surfaces by lithographic methods such as micro contact printing or nano-imprint lithography.


Subject(s)
Filtration/instrumentation , Manufactured Materials , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Infrared Rays , Light , Scattering, Radiation
2.
J Opt Soc Am A Opt Image Sci Vis ; 24(9): 2943-52, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17767266

ABSTRACT

We address the problem of the modeling of the extinction coefficient into an absorbing medium, including a random distribution of identical scatterers of arbitrary size. We show that the extinction coefficient, including losses in the host medium, can be derived from a diagrammatic expansion arising from the rigorous multiple-scattering theory of electromagnetic waves in random media. While in previous approaches the contribution to the extinction coefficient due to the absorption in the host medium and due to the absorption and scattering by the particles were evaluated separately and heuristically, our approach is based on a derivation from first principles.

3.
J Opt Soc Am A Opt Image Sci Vis ; 24(9): 2953-62, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17767267

ABSTRACT

We present a numerical investigation of the light scattering in an absorbing medium with randomly distributed scatterers. The extinction coefficient is derived from an ensemble of numerical solutions of Maxwell's equations for many different realizations of the system. Results are in good agreement with the predictions given by the effective medium theory under the independent-scattering approximation. Beyond the independent-scattering approximation, we explore the domain of validity of an effective medium theory that takes into account correlations between pairs of scatterers. A good agreement is obtained with a filling ratio up to 30% for scatterers with a relative refractive index contrast lower than 20% and size parameters near unity.

SELECTION OF CITATIONS
SEARCH DETAIL
...