Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chemphyschem ; : e202400328, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804589

ABSTRACT

The valence band electronic structure of isolated silver iodide nanoparticles (AgI NP) was investigated by vacuum-ultraviolet aerosol photoelectron spectroscopy using the velocity map imaging technique (VUV VMI-PES). The VUV VMI-PES results were obtained for polydisperse aerosol produced by aggregation of hydrocolloid of silver iodide particles 8-15 nm in size. The ionization energy of the AgI particles was found to be 6.0±0.1 eV with respect to the vacuum level. The DFT calculations showed that the main contribution to the density of AgI electronic states in the valence region originates from I 5p orbitals. The dependence of the asymmetry parameter on the electron energy showed that the value of the characteristic energy loss of excited photoelectrons was 2.7 eV, which coincided with the band gap of the nanomaterial.

2.
Phys Chem Chem Phys ; 25(42): 29017-29031, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37860895

ABSTRACT

Despite wide interest in halide perovskite materials, it is still challenging to accurately calculate their electronic structure and its temperature dependence. In this work, we present ab-initio calculations of the temperature dependence of the electronic structure of CsPbX3 materials (X = Cl, Br or I) in the cubic form and of the zero temperature electronic structure of the orthorhombic phase of these materials. Phonon-induced temperature dependent band energy renormalization was calculated within the framework of Allen-Heine-Cardona theory, where we exploited the self-consistent procedure to determine both the energy level shifts and their broadenings. The phonon spectrum of the materials was obtained using the self-consistent phonon method since standard density functional perturbation theory calculations in harmonic approximation yield phonon modes with imaginary frequencies due to the fact that the cubic structure is not stable at zero temperature. Our results suggest that low energy phonon modes mostly contribute to phonon-induced band energy renormalization. The calculated values of the band gaps at lowest temperature where the material exhibits a cubic structure are in good agreement with experimental results from the literature. The same is the case for the slope of the temperature dependence of the band gap for the CsPbI3 material where reliable experimental data are available in the literature. We also found that phonon-induced temperature dependence of the band gap is most pronounced for the conduction band minimum and valence band maximum, while other bands exhibit a weaker dependence.

3.
Phys Rev Lett ; 129(9): 096401, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36083668

ABSTRACT

It is generally accepted that the dynamical mean field theory gives a good solution of the Holstein model, but only in dimensions greater than two. Here, we show that this theory, which becomes exact in the weak coupling and in the atomic limit, provides an excellent, numerically cheap, approximate solution for the spectral function of the Holstein model in the whole range of parameters, even in one dimension. To establish this, we make a detailed comparison with the spectral functions that we obtain using the newly developed momentum-space numerically exact hierarchical equations of motion method, which yields electronic correlation functions directly in real time. We crosscheck these conclusions with our path integral quantum Monte Carlo and exact diagonalization results, as well as with the available numerically exact results from the literature.

4.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591248

ABSTRACT

In this paper, we present a new high-resolution algorithm for primary signal processing in High Frequency Surface Wave Radar (HFSWR). The algorithm has been developed to achieve and improve primary signal processing performance in existing HFSWR radars in terms of radar target detection. The proposed algorithm is based on a high-resolution estimate of the Range-Doppler (RD-HR) map using given number of frames in the selected integration period. RD-HR maps are formed at every antenna in receive antenna array. Target detection is based on an RD-HR map averaged across all the antennas. Azimuth estimation is performed by a high-resolution MUSIC-type algorithm that is executed for all detections we found in the RD-HR map. The existence of strong Bragg's lines in the RD-HR map complicates the detection process but the contrast of the RD-HR map as well as the detectability of targets on the RD-HR map is significantly better compared to the RD-FFT map used by many existing radars, such as WERA.


Subject(s)
Radar , Signal Processing, Computer-Assisted , Algorithms , Radio Waves , Ultrasonography, Doppler
5.
J Phys Chem Lett ; 12(27): 6389-6397, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34232672

ABSTRACT

This work presents a novel theoretical description of the nonequilibrium thermodynamics of charge separation in organic solar cells (OSCs). Using stochastic thermodynamics, we take realistic state populations derived from the phonon-assisted dynamics of electron-hole pairs within photoexcited organic bilayers to connect the kinetics with the free energy profile of charge separation. Hereby, we quantify for the first time the difference between nonequilibrium and equilibrium free energy profile. We analyze the impact of energetic disorder and delocalization on free energy, average energy, and entropy. For a high disorder, the free energy profile is well-described as equilibrated. We observe significant deviations from equilibrium for delocalized electron-hole pairs at a small disorder, implying that charge separation in efficient OSCs proceeds via a cold but nonequilibrated pathway. Both a large Gibbs entropy and large initial electron-hole distance provide an efficient charge separation, while a decrease in the free energy barrier does not necessarily enhance charge separation.

6.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068210

ABSTRACT

We address the accuracy of wideband direct position estimation of a radio transmitter via a distributed antenna array in 5G cellular systems. Our derivations are based only on the presence of spatially coherent line-of-sight (LoS) signal components, which is a realistic assumption in small cells, especially in the mmWave range. The system model considers collocated time and phase synchronized receiving front-ends with antennas distributed in 3D space at known locations and connected to the front-ends via calibrated coaxial cables or analog radio-frequency-over-fiber links. Furthermore, the signal model assumes spherical wavefronts. We derive the Cramér-Rao bounds (CRBs) for two implementations of the system: with (a) known signals and (b) random Gaussian signals. The results show how the bounds depend on the carrier frequency, number of samples used for estimation, and signal-to-noise ratios. They also show that increasing the number of antennas (such as in massive MIMO systems) considerably improves the accuracy and lowers the signal-to-noise threshold for localization even for non-cooperative transmitters. Finally, our derivations show that the square roots of the bounds are two to three orders of magnitude below the carrier wavelength for realistic system parameters.

7.
Sensors (Basel) ; 19(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640259

ABSTRACT

We address wideband direct coherent localization of a radio transmitter by a distributed antenna array in a multipath scenario with spatially-coherent line-of-sight (LoS) signal components. Such a signal scenario is realistic in small cells, especially indoors in the mmWave range. The system model considers collocated time and phase synchronized receiving front-ends with antennas distributed in 3D space at known locations connected to the front-ends via calibrated coaxial cables or analog radio frequency over fiber links. The signal model assumes spherical wavefronts. We propose two ML-type algorithms (for known and unknown transmitter waveforms) and a subspace-based SCM-MUSIC algorithm for wideband direct coherent position estimation. We demonstrate the performance of the methods by Monte Carlo simulations. The results show that even in multipath environments, it is possible to achieve localization accuracy that is much better (by two to three orders of magnitude) than the carrier wavelength. They also suggest that the methods that do not exploit knowledge of the waveform have mean-squared errors approaching the Cramér-Rao bound.

8.
J Biophotonics ; 12(12): e201900218, 2019 12.
Article in English | MEDLINE | ID: mdl-31452335

ABSTRACT

Modern document protection relies on the simultaneous combination of many optical features with micron and submicron structures, whose complexity is the main obstacle for unauthorized copying. In that sense, documents are best protected by the diffractive optical elements generated lithographically and mass-produced by embossing. The problem is that the resulting security elements are identical, facilitating mass-production of both original and counterfeited documents. Here, we prove that each butterfly wing-scale is structurally and optically unique and can be used as an inimitable optical memory tag and applied for document security. Wing-scales, exhibiting angular variability of their color, were laser-cut and bleached to imprint cryptographic information of an authorized issuer. The resulting optical memory tag is extremely durable, as verified by several century-old insect specimens still retaining their coloration. The described technique is simple, amenable to mass-production, low cost and easy to integrate within the existing security infrastructure.


Subject(s)
Biomimetics , Butterflies/anatomy & histology , Documentation , Optical Phenomena , Safety , Wings, Animal , Animals
9.
Phys Chem Chem Phys ; 20(40): 25693-25700, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30280172

ABSTRACT

The effects of thermal disorder on the electronic properties of organic/inorganic halide perovskites were investigated using ab initio molecular dynamics simulations. It was generally found that band gap variations due to effects of thermal disorder are the largest in materials with the smallest lattice constant. The factors that may lead to departure from this trend include the degree of rotational and translational motion of the organic cation and the strength of its dipole. It was found that the contribution of the flexible organic part to the band gap variations is considerably smaller than the contribution of the inorganic part of the material. The results of our simulations indicate that band gap variations in halide perovskites fall within the range exhibited in inorganic semiconductors.

10.
Sci Rep ; 8(1): 15557, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30348982

ABSTRACT

Since the first demonstration of lasing in direct bandgap GeSn semiconductors, the research efforts for the realization of electrically pumped group IV lasers monolithically integrated on Si have significantly intensified. This led to epitaxial studies of GeSn/SiGeSn hetero- and nanostructures, where charge carrier confinement strongly improves the radiative emission properties. Based on recent experimental literature data, in this report we discuss the advantages of GeSn/SiGeSn multi quantum well and quantum dot structures, aiming to propose a roadmap for group IV epitaxy. Calculations based on 8-band k∙p and effective mass method have been performed to determine band discontinuities, the energy difference between Γ- and L-valley conduction band edges, and optical properties such as material gain and optical cross section. The effects of these parameters are systematically analyzed for an experimentally achievable range of Sn (10 to 20 at.%) and Si (1 to 10 at.%) contents, as well as strain values (-1 to 1%). We show that charge carriers can be efficiently confined in the active region of optical devices for experimentally acceptable Sn contents in both multi quantum well and quantum dot configurations.

11.
EURASIP J Adv Signal Process ; 2018(1): 33, 2018.
Article in English | MEDLINE | ID: mdl-29904392

ABSTRACT

In this paper, we propose a massive MIMO (multiple-input-multiple-output) architecture with distributed steerable phased antenna subarrays for position estimation in the mmWave range. We also propose localization algorithms and a multistage/multiresolution search strategy that resolve the problem of high side lobes, which is inherent in spatially coherent localization. The proposed system is intended for use in line-of-sight indoor environments. Time synchronization between the transmitter and the receiving system is not required, and the algorithms can also be applied to a multiuser scenario. The simulation results for the line-of-sight-only and specular multipath scenarios show that the localization error is only a small fraction of the carrier wavelength and that it can be achieved under reasonable system parameters including signal-to-noise ratios, antenna number/placement, and subarray apertures. The proposed concept has the potential of significantly improving the capacity and spectral/energy efficiency of future mmWave massive MIMO systems.

12.
J Phys Chem Lett ; 9(13): 3604-3611, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29902010

ABSTRACT

We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.

13.
Phys Chem Chem Phys ; 16(47): 25950-8, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25358087

ABSTRACT

The effects of thermal disorder on the electronic properties of crystalline polymers were investigated. Atomic configurations of the material were obtained using classical Monte Carlo simulations at room temperature, while electronic structure calculations were performed using the density functional theory based charge patching method and the overlapping fragment method. We investigated two different stable configurations of crystalline poly(3-hexylthiophene) (P3HT) and calculated the density of electronic states and the wave function localisation. We found that the effect of disorder in side chains is more pronounced in the more stable configuration of P3HT than in the other one due to the larger conformational freedom of side chains. The results show that disorder in main chains has a strong effect on the electronic structure and leads to the localisation of the wave functions of the highest states in the valence band, similar to localisation that occurs in amorphous polymers. The presence of such states is one possible origin of thermally activated electrical transport in ordered polymers at room temperature.

14.
J Phys Chem Lett ; 5(8): 1335-40, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-26269977

ABSTRACT

We developed an accurate model accounting for electron-phonon interaction in colloidal quantum dot supercrystals that allowed us to identify the nature of charge carriers and the electrical transport regime. We find that in experimentally analyzed CdSe nanocrystal solids, the electron-phonon interaction is sufficiently strong that small polarons localized to single dots are formed. Charge-carrier transport occurs by small polaron hopping between the dots, with mobility that decreases with increasing temperature. While such a temperature dependence of mobility is usually considered as a proof of band transport, we show that the same type of dependence occurs in the system where transport is dominated by small polaron hopping.

15.
J Am Chem Soc ; 135(32): 12048-56, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23855781

ABSTRACT

The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.

16.
Phys Chem Chem Phys ; 15(10): 3543-51, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23376937

ABSTRACT

The comparison of hole density of states (DOS) and hole mobilities of several organic polymer based systems was performed to gain insight into the main factors that determine the electrical properties of conjugated polymers. The DOS and the mobility of the systems under investigation were evaluated using an atomistic multiscale procedure. The results suggest that the irregularities in the shape of the polymer chains increase the diagonal disorder, while alkyl side chains act as spacers that reduce the diagonal disorder which originates from long range electrostatic interactions. Intrachain electronic coupling in relatively ordered polymers narrows the tail of the DOS, while in less ordered polymers it represents the additional component of disorder and widens the tail of the DOS. The width of the DOS tail was confirmed to be an important factor that determines the activation energy for charge carrier transport. However, it is not the only factor since the system with a smaller width of the DOS tail can have a larger activation energy due to, for example, smaller wave function overlap between transport states.

17.
Phys Rev Lett ; 109(12): 126407, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005969

ABSTRACT

We consider electron-phonon coupling in crystalline organic semiconductors, using naphthalene for our case study. Employing a first-principles approach, we compute the changes in the selfconsistent Kohn-Sham potential corresponding to different phonon modes and go on to obtain the carrier-phonon coupling matrix elements (vertex functions). We then evaluate perturbatively the quasiparticle spectral residues for electrons at the bottom of the lowest unoccupied (LUMO), and holes at the top of the highest occupied (HOMO), band, obtaining Z(e) ≈ 0.74 and Z(h) ≈ 0.78, respectively. Along with the widely accepted notion that the carrier-phonon coupling strengths in polyacenes decrease with increasing molecular size, our results provide strong microscopic evidence for the previously conjectured nonpolaronic nature of bandlike carriers in these systems.

18.
J Phys Chem Lett ; 3(17): 2442-6, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-26292130

ABSTRACT

Time-resolved terahertz spectroscopy was employed for the investigation of charge-transport dynamics in benzothiadiazolo-dithiophene polyfluorene ([2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) (APFO-3) polymers with various chain lengths and in its monomer form, all blended with an electron acceptor ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM). Upon photoexcitation, charged polaron pairs are created, negative charges are transferred to fullerenes, while positive polarons remain on polymers/monomers. Vastly different hole mobility in polymer and monomer blends allows us to distinguish the hole and electron contributions to the carrier mobility.

20.
Nano Lett ; 11(10): 4107-12, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21848283

ABSTRACT

Using conducting probe atomic force microscopy (CAFM) we have investigated the electrical conduction properties of monolayer films of a pentathiophene derivative on a SiO(2)/Si-p+ substrate. By a combination of current-voltage spectroscopy and current imaging we show that lateral charge transport takes place in the plane of the monolayer via hole injection into the highest occupied molecular orbitals of the pentathiophene unit. Our CAFM data suggest that the conductivity is anisotropic relative to the crystalline directions of the molecular lattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...