Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hematol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713255

ABSTRACT

Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.

2.
Heliyon ; 10(3): e25081, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38314300

ABSTRACT

Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.

3.
Vaccines (Basel) ; 11(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37896963

ABSTRACT

The severity and mortality of coronavirus disease 2019 (COVID-19) are greater in males than in females, though the infection rate is the same in the two sexes. We investigated sex hormone differences associated with the hyperinflammatory immune response to SARS-CoV-2 on the basis of patients' cytokine profiles and vaccination statuses. Clinical and laboratory data of 117 patients with COVID-19 were collected to examine sex differences associated with oxidative stress markers, neutrophil extracellular traps (NETs), and plasma cytokine levels up to 5 months from hospital admission. The testosterone and free testosterone levels were low in male patients with COVID-19 and returned to normal values after recovery from the disease. The dihydrotestosterone (DHT) levels were transiently reduced, while the sex hormone-binding globulin levels were decreased in post-COVID-19 male patients. The levels of the inflammatory cytokines interleukin-6 (IL-6) and IL-10 appeared generally increased at diagnosis and decreased in post-COVID-19 patients. In females, the concentration of tumor necrosis factor-alpha was increased by four times at diagnosis. The levels of the coagulation markers intercellular adhesion molecule-1 (ICAM-1) and E-selectin were consistently upregulated in post-COVID-19 female patients, in contrast to those of vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and chemokine IL-8. DHT increased the levels of reactive oxygen species in the neutrophils of male patients, while estradiol decreased them in females. Markers for NET, such as circulating DNA and myeloperoxidase, were significantly more abundant in the patients' plasma. Sex hormones have a potential protective role during SARS-CoV-2 infection, which is weakened by impaired testosterone synthesis in men.

4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805957

ABSTRACT

The calcium-binding proteins S100A4, S100A8, and S100A9 are upregulated in chronic lymphocytic leukemia (CLL), while the S100A9 promotes NF-κB activity during disease progression. The S100-protein family has been involved in several malignancies as mediators of inflammation and proliferation. The hypothesis of our study is that S100A proteins are mediators in signaling pathways associated with inflammation-induced proliferation, such as NF-κB, PI3K/AKT, and JAK/STAT. The mononuclear cells (MNCs) of CLL were treated with proinflammatory IL-6, anti-inflammatory IL-10 cytokines, inhibitors of JAK1/2, NF-κB, and PI3K signaling pathways, to evaluate S100A4, S100A8, S100A9, and S100A12 expression as well as NF-κB activation by qRT-PCR, immunocytochemistry, and immunoblotting. The quantity of S100A4, S100A8, and S100A9 positive cells (p < 0.05) and their protein expression (p < 0.01) were significantly decreased in MNCs of CLL patients compared to healthy controls. The S100A levels were generally increased in CD19+ cells compared to MNCs of CLL. The S100A4 gene expression was significantly stimulated (p < 0.05) by the inhibition of the PI3K/AKT signaling pathway in MNCs. IL-6 stimulated S100A4 and S100A8 protein expression, prevented by the NF-κB and JAK1/2 inhibitors. In contrast, IL-10 reduced S100A8, S100A9, and S100A12 protein expressions in MNCs of CLL. Moreover, IL-10 inhibited activation of NF-κB signaling (4-fold, p < 0.05). In conclusion, inflammation stimulated the S100A protein expression mediated via the proliferation-related signaling and balanced by the cytokines in CLL.


Subject(s)
Cytokines , Leukemia, Lymphocytic, Chronic, B-Cell , S100 Proteins , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Humans , Inflammation/pathology , Interleukin-10/metabolism , Interleukin-6/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , S100 Proteins/metabolism
5.
Exp Mol Med ; 54(3): 273-284, 2022 03.
Article in English | MEDLINE | ID: mdl-35288649

ABSTRACT

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFß and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFß and inflammatory signaling to extenuate fibrosis in MPN.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Fibrosis , Humans , Mesenchymal Stem Cells/metabolism , Neoplasms/metabolism , Signal Transduction
6.
Biomolecules ; 12(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35204748

ABSTRACT

Chronic inflammation is characterized by the production of reactive oxygen species (ROS), reactive nitrogen species, and inflammatory cytokines in myeloproliferative neoplasms (MPNs). In addition to these parameters, the aim of this study was to analyze the influence of ROS on the proliferation-related AKT/mTOR signaling pathway and the relationship with inflammatory factors in chronic myelogenous leukemia (CML). The activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase is reduced in erythrocytes while levels of the oxidative stress markers malondialdehyde and protein carbonyl are elevated in the plasma of patients with CML. In addition, nitrogen species (nitrotyrosine, iNOS, eNOS) and inflammation markers (IL-6, NFkB, and S100 protein) were increased in granulocytes of CML while anti-inflammatory levels of IL-10 were decreased in plasma. CML granulocytes exhibited greater resistance to cytotoxic H2O2 activity compared to healthy subjects. Moreover, phosphorylation of the apoptotic p53 protein was reduced while the activity of the AKT/mTOR signaling pathway was increased, which was further enhanced by oxidative stress (H2O2) in granulocytes and erythroleukemic K562 cells. IL-6 caused oxidative stress and DNA damage that was mitigated using antioxidant or inhibition of inflammatory NFkB transcription factor in K562 cells. We demonstrated the presence of oxidative and nitrosative stress in CML, with the former mediated by AKT/mTOR signaling and stimulated by inflammation.


Subject(s)
Hydrogen Peroxide , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Hydrogen Peroxide/pharmacology , Inflammation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Nitrosative Stress , Oxidative Stress , Reactive Oxygen Species/metabolism
7.
J Pers Med ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34834400

ABSTRACT

Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated ß-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.

8.
Stud Health Technol Inform ; 274: 55-67, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32990665

ABSTRACT

Application of economics in the healthcare area is relatively new. Until recently, the public health scene has not understood the importance that the application of well-established economic concepts could have in this field. Fortunately, it is now well recognized that the introduction of economics in health (health economics) is of great importance. While other disciplines contribute to the understanding of factors that determine the health of an individual, health economics contributes to a better understanding of an individual's behavior that would ultimately have a strong influence on his health condition. A health economist explains individual behavior as a process in which an individual makes decisions by comparing current health condition, time and financial costs on one side and future health contributions such as a decrease of the probability of getting a disease or death, on the other side. Clarification of this issue, as well as numerous other issues concerning health economics applications are the central challenges for this field of research.


Subject(s)
Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...