Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; : e2300641, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629187

ABSTRACT

Human embryonic stem cells (hESCs) resemble the pluripotent epiblast cells found in the early postimplantation human embryo and represent the "primed" state of pluripotency. One factor that helps primed pluripotent cells retain pluripotency and prepare genes for differentiation is the transcription factor TCF7L1, a member of a small family of proteins known as T cell factors/Lymphoid enhancer factors (TCF/LEF) that act as downstream components of the WNT signaling pathway. Transcriptional output of the WNT pathway is regulated, in part, by the activity of TCF/LEFs in conjunction with another component of the WNT pathway, ß-CATENIN. Because TCF7L1 plays an important role in regulating pluripotency, we began to characterize the protein complex associated with TCF7L1 when bound to chromatin in hESCs using rapid immunoprecipitation of endogenous proteins (RIME).  Data are available via ProteomeXchange with identifier PXD047582. These data identify known and new partners of TCF7L1 on chromatin and provide novel insights into how TCF7L1 and pluripotency itself might be regulated.

2.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Article in English | MEDLINE | ID: mdl-38111711

ABSTRACT

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Subject(s)
Hepatocyte Nuclear Factor 4 , Lipid Metabolism , Animals , Female , Mice , Carbohydrates , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
3.
J Med Chem ; 66(8): 5981-6001, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37026468

ABSTRACT

CDC42 GTPases (RHOJ, CDC42, and RHOQ) are overexpressed in multiple tumor types and activate pathways critical for tumor growth, angiogenesis, and metastasis. Recently, we reported the discovery of a novel lead compound, ARN22089, which blocks the interaction of CDC42 GTPases with specific downstream effectors. ARN22089 blocks tumor growth in BRAF mutant mouse melanoma models and patient-derived xenografts (PDXs) in vivo. ARN22089 also inhibits tumor angiogenesis in three-dimensional vascularized microtumor models in vitro. Notably, ARN22089 belongs to a novel class of trisubstituted pyrimidines. Based on these results, we describe an extensive structure-activity relationship of ∼30 compounds centered on ARN22089. We discovered and optimized two novel inhibitors (27, ARN25062, and 28, ARN24928), which are optimal back-up/follow-up leads with favorable drug-like properties and in vivo efficacy in PDX tumors. These findings further demonstrate the potential of this class of CDC42/RHOJ inhibitors for cancer treatment, with lead candidates ready for advanced preclinical studies.


Subject(s)
Neoplasms , rho GTP-Binding Proteins , Animals , Humans , Mice , Cell Line, Tumor , Neovascularization, Pathologic , p21-Activated Kinases/metabolism , Protein Binding
5.
Cell Rep ; 39(1): 110641, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385746

ABSTRACT

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Subject(s)
Endothelial Cells , Neoplasms , Animals , Endothelial Cells/metabolism , Humans , Mice , Neoplasms/drug therapy , Neovascularization, Pathologic , Signal Transduction , Tumor Microenvironment , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
6.
Proteomics ; 19(15): e1900169, 2019 08.
Article in English | MEDLINE | ID: mdl-31219246

ABSTRACT

Long Interspersed Element-1 (LINE-1 or L1) are transposable elements similar to retroviruses that have existed in the genome of primates for millions of years. They encode two Open Reading Frame (ORF) proteins (ORF1p and ORF2p) that bind L1 RNA to form a ribonucleoprotein (RNP) complex and are required for L1 integration into the host genome. Humans have evolved with L1 and found ways to limit L1 activity. To identify partners of the L1 RNP, previous studies used ectopic expression of L1 ORF1/2p or RNA in various cancer cells, which express low levels of the ORF proteins. Whether naturally occurring L1 RNP interacts with the same proteins in non-cancer cells is unknown. Here, the aim is to examine the natural assembly of endogenous L1 RNPs in normal human cells. L1 elements are expressed in human embryonic stem cells (hESCs), derived from pre-implantation embryos. Therefore, these cells are used to immunoprecipitate ORF1p followed by MS to identify proteins that associate with the naturally-occurring L1 ORF1p. Some of the same proteins as well as unique proteins are found interacting with the endogenous L1 ORF1p complexes. The analysis of ORF1p-associated proteins in hESCs can help address important questions in both retrotransposon biology and the biology of hESCs.


Subject(s)
Human Embryonic Stem Cells/metabolism , Proteome/metabolism , Retroelements/genetics , Ribonucleoproteins/metabolism , Humans , Immunoprecipitation , Mass Spectrometry
7.
Development ; 145(4)2018 02 23.
Article in English | MEDLINE | ID: mdl-29361574

ABSTRACT

Human embryonic stem cells (hESCs) are exquisitely sensitive to WNT ligands, which rapidly cause differentiation. Therefore, hESC self-renewal requires robust mechanisms to keep the cells in a WNT inactive but responsive state. How they achieve this is largely unknown. We explored the role of transcriptional regulators of WNT signaling, the TCF/LEFs. As in mouse ESCs, TCF7L1 is the predominant family member expressed in hESCs. Genome-wide, it binds a gene cohort involved in primitive streak formation at gastrulation, including NODAL, BMP4 and WNT3 Comparing TCF7L1-bound sites with those bound by the WNT signaling effector ß-catenin indicates that TCF7L1 acts largely on the WNT signaling pathway. TCF7L1 overlaps less with the pluripotency regulators OCT4 and NANOG than in mouse ESCs. Gain- and loss-of-function studies indicate that TCF7L1 suppresses gene cohorts expressed in the primitive streak. Interestingly, we find that BMP4, another driver of hESC differentiation, downregulates TCF7L1, providing a mechanism of BMP and WNT pathway intersection. Together, our studies indicate that TCF7L1 plays a major role in maintaining hESC pluripotency, which has implications for human development during gastrulation.


Subject(s)
Human Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Primitive Streak/metabolism , Transcription Factor 7-Like 1 Protein/metabolism , Wnt Signaling Pathway/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Cell Lineage , Electrophoresis, Polyacrylamide Gel , Gene Expression , Humans , Immunohistochemistry , Microarray Analysis , Polymerase Chain Reaction
8.
Elife ; 52016 05 11.
Article in English | MEDLINE | ID: mdl-27166517

ABSTRACT

HNF4α has been implicated in colitis and colon cancer in humans but the role of the different HNF4α isoforms expressed from the two different promoters (P1 and P2) active in the colon is not clear. Here, we show that P1-HNF4α is expressed primarily in the differentiated compartment of the mouse colonic crypt and P2-HNF4α in the proliferative compartment. Exon swap mice that express only P1- or only P2-HNF4α have different colonic gene expression profiles, interacting proteins, cellular migration, ion transport and epithelial barrier function. The mice also exhibit altered susceptibilities to experimental colitis (DSS) and colitis-associated colon cancer (AOM+DSS). When P2-HNF4α-only mice (which have elevated levels of the cytokine resistin-like ß, RELMß, and are extremely sensitive to DSS) are crossed with Retnlb(-/-) mice, they are rescued from mortality. Furthermore, P2-HNF4α binds and preferentially activates the RELMß promoter. In summary, HNF4α isoforms perform non-redundant functions in the colon under conditions of stress, underscoring the importance of tracking them both in colitis and colon cancer.


Subject(s)
Colitis/pathology , Colonic Neoplasms/pathology , Hepatocyte Nuclear Factor 4/analysis , Protein Isoforms/analysis , Animals , Colitis/complications , Disease Models, Animal , Mice
9.
Mol Cell Biol ; 35(20): 3471-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26240283

ABSTRACT

The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/ß-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/ß-catenin/TCF4 and AP-1 pathways.


Subject(s)
Colorectal Neoplasms/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 4/physiology , Transcription Factor AP-1/metabolism , Animals , Base Sequence , Binding, Competitive , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Consensus Sequence , Gene Expression Regulation, Neoplastic , Gene Ontology , HCT116 Cells , Humans , Male , Mice, Nude , Neoplasm Transplantation , Polymorphism, Single Nucleotide , Protein Binding , Protein Isoforms/physiology , Transcriptome , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...