Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc SPIE Int Soc Opt Eng ; 86692013 Mar 13.
Article in English | MEDLINE | ID: mdl-24353391

ABSTRACT

Many brain aging studies use total intracranial volume (TIV) as a proxy measure of premorbid brain size that is unaffected by neurodegeneration. T1-weighted Magnetic Resonance Imaging (MRI) sequences are commonly used to measure TIV, but T2-weighted MRI sequences provide superior contrast between the cerebrospinal fluid (CSF) bounding the premorbid brain space and surrounding dura mater. In this study, we compared T1-based and T2-based TIV measurements to assess the practical impact of this superior contrast on studies of brain aging. 810 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants, including healthy elders and those with mild cognitive impairment (MCI) and Alzheimer's Disease (AD), received T1-weighted and T2-weighted MRI at their baseline evaluation. TIV was automatically estimated from T1-weighted images using FreeSurfer version 4.3 (T1TIV), and an automated active contour method was used to estimate TIV from T2-weighted images (T2TIV). The correlation between T1TIV and T2TIV was high (.93), and disagreement was greater on larger heads. However, correcting a FreeSurfer-based measure of total parenchymal volume by dividing it by T2TIV led to stronger expected associations with a standardized measure of cognitive dysfunction (MMSE) in Poisson regression models among individuals with AD (z=1.73 vs. 1.09) and MCI (z=3.15 vs. 2.79) than a corresponding parenchymal volume measure divided by T1TIV. This effect was enhanced when the analysis was restricted to the cases where T1TIV and T2TIV disagreed the most. These findings suggest that T2-based TIV measurements may be higher fidelity than T1-based TIV measurements, thus leading to greater sensitivity to detect biologically plausible brain-behavior associations.

2.
Inf Process Med Imaging ; 23: 487-98, 2013.
Article in English | MEDLINE | ID: mdl-24683993

ABSTRACT

We present a method for establishing correspondences between human cortical surfaces that exactly matches the positions of given point landmarks, while attaining the global minimum of an objective function that quantifies how far the mapping deviates from conformality. On each surface, a conformal transformation is applied to the Euclidean distance metric, resulting in a hyperbolic metric with isolated cone point singularities at the landmarks. Equivalently, each surface is mapped to a hyperbolic orbifold: a pillow-like surface with each point landmark corresponding to a pillow corner. An initial surface-to-surface mapping exactly aligns the landmarks, and gradient descent is used to find the single, global minimum of the Dirichlet energy of the remainder of the mapping. Using a population of real MRI-based cortical surfaces with manually labeled sulcus endpoints as landmarks, we evaluate the approach by how much it distorts surfaces and by its biological plausibility: how well it aligns previously-unseen anatomical landmarks and by how well it promotes expected associations between cortical thickness and age. We show that, compared to a painstakingly-tuned approach that balances a tradeoff between minimizing landmark mismatch and Dirichlet energy, our method has similar biological plausibility, superior surface distortion, a better theoretical foundation, and fewer arbitrary parameters to tune. We also compare to conformal mapper in the spherical domain to show that sacrificing exact conformality of the mapping does not cause noticeable reductions in biological plausibility.


Subject(s)
Anatomic Landmarks/anatomy & histology , Cerebral Cortex/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Aged , Aged, 80 and over , Algorithms , Female , Humans , Image Enhancement/methods , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...