Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Sci Rep ; 14(1): 2060, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267615

ABSTRACT

Reduction of post-weaning diarrhoea caused by ETEC is a principal objective in pig farming in terms of welfare benefits. This study determined the effects of genetic susceptibility and dietary strategies targeting inflammation and fimbriae adherence on F4-ETEC shedding and diarrhoea in weaned piglets in an experimental challenge model. A DNA marker test targeting single nucleotide polymorphism 2 (SNP2) identified piglets as heterozygous (SNP2+, susceptible) or homozygous (SNP2-, resistant) to developing F4ac-ETEC diarrhoea. A total of 50 piglets, 25 SNP2+ and 25 SNP2-, were weaned at 30 days of age and equally distributed to different treatments (n = 10): Positive control (PC): piglets fed with a negative control diet and provided with colistin via drinking water; Negative control (NC): piglets fed with a negative control diet; Tall oil fatty acids (TOFA): piglets fed with a negative control diet + 1.0 g TOFA/kg feed; Yeast hydrolysate (YH): piglets fed with a negative control diet + 1.5 g YH/kg feed derived from Saccharomyces cerevisiae; and Combination (COM): piglets fed with a negative control diet + 1.0 g TOFA and 1.5 g YH/kg feed. On day 10 post-weaning, all piglets were infected with F4-ETEC by oral administration. Piglets fed with PC, TOFA, YH or COM had a lower faecal shedding of F4-ETEC than NC piglets (P < 0.001), which was also shorter in duration for PC and TOFA piglets than for NC piglets (P < 0.001). Piglets in PC, TOFA, YH and COM had a shorter diarrhoea duration versus NC when classified as SNP2+ (P = 0.02). Furthermore, PC, TOFA and YH piglets grew more than NC and COM piglets in the initial post-inoculation period (P < 0.001). In addition, the level of faecal F4-ETEC shedding and the percentage of pigs that developed F4-ETEC diarrhoea (72 vs. 32%, P < 0.01) following infection were higher, and the duration of F4-ETEC diarrhoea longer (2.6 vs. 0.6 days, P < 0.001), in SNP2+ piglets than in SNP2- piglets, and led to reduced growth performance (P = 0.03). In conclusion, piglets fed with TOFA, YH or their combination, irrespective of their SNP2 status, are more resilient to F4-ETEC infection. Moreover, SNP2+ piglets show a higher level of F4-ETEC shedding and diarrhoea prevalence than SNP2- piglets, confirming an association between SNP2 and F4ac-ETEC susceptibility.


Subject(s)
Enterotoxigenic Escherichia coli , Plant Oils , Saccharomyces cerevisiae , Animals , Swine , Polymorphism, Single Nucleotide , Diarrhea/genetics , Diarrhea/veterinary , Fatty Acids
2.
J Appl Microbiol ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38244225

ABSTRACT

AIM: Hospital-acquired infections (HAIs) caused by antimicrobial-resistant ESKAPE pathogens are a significant concern for the healthcare industry, with an estimated cost of up to ${\$}$45 billion per year in the US alone. Clostridioides difficile is an additional opportunistic pathogen that also poses a serious threat to immunocompromised patients in hospitals. Infections caused by these pathogens lead to increased hospital stays and repeated readmission, resulting in a significant economic burden. Disinfectants and sporicidals are essential to reduce the risk of these pathogens in hospitals, but commercially available products can have a number of disadvantages including inefficacy, long contact times, short shelf lives, and operator health hazards. In this study we evaluated the effectiveness of Rosin (a natural substance secreted by coniferous trees as a defence mechanism against wounds in tree bark) and its commercial derivative Rosetax-21 as disinfectants and sporicidal against the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and spore preparations from Clostridioides difficile. METHODS AND RESULTS: Both Rosin and Rosetax-21 were tested under simulated clean and dirty conditions (with BSA) against the ESKAPE pathogens, and C. difficile spore preparations. In clean conditions, Rosin (5% weight/volume: w/v) demonstrated significant efficacy against five of the ESKAPE pathogens, with A. baumannii and E. faecium being the most susceptible, and K. pneumoniae the most resistant, showing only a one-log reduction after a 5 min treatment. However, in dirty conditions, all pathogens including K. pneumoniae exhibited at least a 3-log reduction to Rosin within 5 min. Rosetax-21 (5% w/v) was found to be less effective than Rosin in clean conditions, a trend that was exacerbated in the presence of BSA. Additionally, both Rosin and Rosetax-21 at 2.5% (w/v) achieved complete eradication of C. difficile spores when combined with 0.5% glutaraldehyde, though their standalone sporicidal activity was limited. CONCLUSIONS: The findings from this study highlight the potential of Rosin and Rosetax-21 as both bactericidal and sporicidal disinfectants, with their efficacy varying based on the conditions and the pathogens tested. This presents an avenue for the development of novel healthcare disinfection strategies, especially against HAIs caused by antimicrobial-resistant ESKAPE pathogens and C. difficile.

3.
Avian Pathol ; 53(2): 115-123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38096268

ABSTRACT

RESEARCH HIGHLIGHTS: Large number of bacteria isolated from femoral heads of clinically healthy broilers.The prevailing taxa in femoral heads were Escherichia/Shigella and Enterococcus spp.Continuous presence of bacteria in blood and liver of clinically healthy broilers.Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae prevail in blood and liver.


Subject(s)
Femur Head , Poultry Diseases , Humans , Animals , Enterobacteriaceae , Chickens , Enterococcaceae , Bacteria , Poultry Diseases/microbiology
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232913

ABSTRACT

Systemic inflammatory response syndrome (SIRS) is a severe condition characterized by systemic inflammation, which may lead to multiple organ failure, shock and death. SIRS is common in burn patients, pancreatitis and sepsis. SIRS is often accompanied by intestinal dysbiosis. However, the mechanism, role and details of microbiome alterations during the early phase of acute SIRS are not completely understood. The current study aimed to characterize the dynamic alterations of both the intestinal and respiratory microbiome at two timepoints during the early phase of acute SIRS (4 and 8 h after LPS) and link these to the host response in a mouse model of a LPS-induced lethal SIRS. Acute SIRS had no effect on the microbiome in the large intestine but induced a rapid dysbiosis in the small intestine, which resembled the microbiome alterations commonly observed in SIRS patients. Later in the disease progression, a dysbiosis of the respiratory microbiome was observed, which was associated with the MMP9 expression in the lungs. Although similar bacteria were increased in both the lung and the small intestine, no evidence for a gut-lung translocation was observed. Gut dysbiosis is commonly observed in diseases involving inflammation in the gut. However, whether the inflammatory response associated with SIRS and sepsis can directly cause gut dysbiosis was still unclear. In the current study we provide evidence that a LPS-induced SIRS can directly cause dysbiosis of the small intestinal and respiratory microbiome.


Subject(s)
Endotoxemia , Gastrointestinal Microbiome , Sepsis , Animals , Dysbiosis/microbiology , Endotoxemia/complications , Inflammation/metabolism , Lipopolysaccharides/toxicity , Matrix Metalloproteinase 9 , Mice , Sepsis/complications
5.
Microbiol Spectr ; 9(3): e0109121, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34935417

ABSTRACT

Chemical methods of virus inactivation are used routinely to prevent viral transmission in both a personal hygiene capacity but also in at-risk environments like hospitals. Several virucidal products exist, including hand soaps, gels, and surface disinfectants. Resin acids, which can be derived from tall oil, produced from trees, have been shown to exhibit antibacterial activity. However, whether these products or their derivatives have virucidal activity is unknown. Here, we assessed the capacity of rosin soap to inactivate a panel of pathogenic mammalian viruses in vitro. We show that rosin soap can inactivate human enveloped viruses: influenza A virus (IAV), respiratory syncytial virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For IAV, rosin soap could provide a 100,000-fold reduction in infectivity. However, rosin soap failed to affect the nonenveloped encephalomyocarditis virus (EMCV). The inhibitory effect of rosin soap against IAV infectivity was dependent on its concentration but not on the incubation time or temperature. In all, we demonstrate a novel chemical inactivation method against enveloped viruses, which could be of use for preventing virus infections in certain settings. IMPORTANCE Viruses remain a significant cause of human disease and death, most notably illustrated through the current coronavirus disease 2019 (COVID-19) pandemic. Control of virus infection continues to pose a significant global health challenge to the human population. Viruses can spread through multiple routes, including via environmental and surface contamination, where viruses can remain infectious for days. Methods for inactivating viruses on such surfaces may help mitigate infection. Here, we present evidence identifying a novel virucidal product, rosin soap, which is produced from tall oil from coniferous trees. Rosin soap was able to rapidly and potently inactivate influenza virus and other enveloped viruses.


Subject(s)
Antiviral Agents/pharmacology , Resins, Plant/pharmacology , Soaps/pharmacology , Antiviral Agents/analysis , Influenza A virus/drug effects , Influenza A virus/growth & development , Plant Oils/analysis , Plant Oils/pharmacology , Resins, Plant/analysis , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Soaps/analysis , Virus Inactivation/drug effects
6.
Animals (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34827777

ABSTRACT

Dietary coniferous resin acids have previously been suggested to support the intestinal integrity of broiler chickens by reducing mucosal collagen degradation. The present study examined the effects of resin acid concentrate (RAC) on broiler performance and litter quality. In trial 1, RAC was added to diets at 0, 125, 250, or 1250 g/ton, while in trials 2 and 3, RAC dosing was 0 or 175 g/ton. Bird weight, feed consumption, mortality, feed conversion ratio (FCR), European Efficiency Index (EEI), litter moisture, and footpad dermatitis (FPD) lesions were measured. In trial 1, RAC at 125 and 250 g/ton improved weight gain and EEI, while RAC at 1250 g/ton group did not differ from control. Feed consumption, FCR, FPD scores and mortality were similar in all treatments, but litter quality was improved by all doses of RAC. In trials 2 and 3, RAC increased the final weight of birds, improved FCR, EEI, and litter quality, but had no effects in other parameters. In summary, RAC at 125-250 g/ton improved bird performance and thus shows promise as a feed additive. The dryer litter in RAC treatments may suggest improved intestinal condition as a response to in-feed resin acids.

7.
Front Vet Sci ; 8: 761742, 2021.
Article in English | MEDLINE | ID: mdl-35004922

ABSTRACT

With the ban of zinc oxide (ZnO) at high dosages in piglet diets in Europe by 2022, alternative nutritional solutions are being tested to support piglet immune defence during their weaning, the most critical and stressful moment of pig production. The present study evaluated the effect of zinc oxide (ZnO; 2,500 mg/kg diet) and resin acid concentrate (RAC; 200 mg/kg diet) on the immune defence of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were challenged at days 7 and 21 post-weaning, and blood was sampled 1.5 and 3.0 h after each challenge to determine serum levels of pro- and anti-inflammatory cytokines. The levels of serum tumour necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) increased at days 7 and 21, and those of IL-6 at day 21 when challenged piglets were fed a diet supplemented with ZnO. In challenged piglets fed with RAC, the serum levels of IL-1ß, IL-6, IL-8, IL-10 and TNF-α were increased at days 7 and 21, except for that of IL-1ß, which was not affected at day 21. The increased levels of these cytokines indicate the successful immune-modulatory effect of ZnO and RAC, which appears as a candidate to replace ZnO in weaned piglets' diets.

8.
Front Vet Sci ; 7: 437, 2020.
Article in English | MEDLINE | ID: mdl-32851020

ABSTRACT

Tall oil fatty acids (TOFA) are novel, health-improving feed ingredients which have been shown to improve the performance of broiler chickens. TOFA contains resin acids, the suggested key components for its beneficial effects. For product safety, possible accumulation of TOFA components in tissues consumed by end-users is an issue of major importance. Wheat-soy-based diets with an indigestible marker and TOFA at 0, 750 and 3,000 g/t were fed to broiler chickens for 5 weeks; 11 replicate pens/treatment. Deposition of resin acids was assessed by analyzing jejunal tissue, breast muscle, abdominal fat, blood, liver, bile, and digesta along the intestinal tract at the end of the 35-day trial. Both free and conjugated resin acids were quantified. With TOFA 3,000 g/t diet, 30% of ingested resin acids could not be recovered from jejunal digesta. Also, a proportion representing 45% of resin acids fed were in conjugated form and thus had already re-entered the intestine from the bile duct. This means that at least 75% of resin acids ingested had become absorbed in, or proximal to jejunum. Recovery of resin acids in excreta was 45 and 70% when TOFA was fed at 750 and 3,000 g/t, respectively. Based on recovery data, of the estimated 1,087 mg of resin acids ingested by birds on the high TOFA dose during their lifetime, about 330 mg was unaccounted for. In analysis of jejunal tissue, blood, liver, bile, breast muscle, and abdominal tissue, <1 mg of resin acids was found after the 35-day trial when TOFA at the 4-fold the recommended dose was fed. It is likely that the host or microbiota mineralized or converted one-third of resin acids to a form that escaped analysis. TOFA at 3,000 g/t dose caused no detectable adverse effects in broiler chickens. Based on analysis of breast meat and liver, the common edible tissues, a human consumer would ingest <100 µg of resin acids in a single meal. That is one-thousandth of the dose shown to be harmless in rodents. Thus, unintentional exposure of human consumers to resin acids is marginal, and posed no safety concerns.

9.
Vet Res ; 50(1): 15, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30795808

ABSTRACT

The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the integrity of the intestinal wall. Strengthening intestinal mucosal integrity is a key target for feed additives that aim to promote intestinal health in broilers. Recently, dietary inclusion of resin-based products has been shown to increase broiler performance. However, the mode of action is still largely unexplored. Coniferous resin acids are known for their anti-microbial, anti-inflammatory and wound-healing properties, all properties that might support broiler intestinal health. In the current study, the effect of pure resin acids on broiler intestinal health was explored. Ross 308 broilers were fed a diet supplemented with coniferous resin acids for 22 days, after which the effect on both the intestinal microbiota as well as on the intestinal tissue morphology and activity of host collagenases was assessed. Dietary inclusion of resin acids did not alter the morphology of the healthy intestine and only minor effects on the intestinal microbiota were observed. However, resin acids-supplementation reduced both duodenal inflammatory T cell infiltration and small intestinal matrix metalloproteinase (MMP) activity towards collagen type I and type IV. Reduced breakdown of collagen type I and IV might indicate a protective effect of resin acids on intestinal barrier integrity by preservation of the basal membrane and the extracellular matrix. Further studies are needed to explore the protective effects of resin acids on broiler intestinal health under sub-optimal conditions and to elaborate our knowledge on the mechanisms behind the observed effects.


Subject(s)
Chickens/metabolism , Gastrointestinal Microbiome/physiology , Intestines/physiology , Matrix Metalloproteinases/metabolism , Resins, Plant/metabolism , Acids/administration & dosage , Acids/metabolism , Animal Feed/analysis , Animals , Chickens/microbiology , Collagen/metabolism , Diet/veterinary , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/physiology , Intestines/drug effects , Resins, Plant/administration & dosage
10.
PLoS One ; 13(5): e0197586, 2018.
Article in English | MEDLINE | ID: mdl-29795617

ABSTRACT

Dietary supplementation with yeast derivatives (YD) contributes to the health and physiology of sows and piglets, but few studies have focused on how it influences gut health and performance of sows and piglets. The goal was therefore to examine whether YD, based on brewer's yeast hydrolysate added to pregnancy diet, would affect colostrum composition, yield (CY) and gut microbiota of sows and piglets. Sows were allocated to either a control diet (n = 19) or a control diet supplemented with 2g YD/kg (n = 18) during the pregnancy. Piglets suckling belonging to the control sows (n = 114) and supplemented sows (n = 108) were also included in the study. Gut microbiota populations of sows at farrowing and piglets at one and four weeks of age were assessed using 16S rRNA gene sequencing. Colostrum samples were examined for nutritional composition and immunoglobulin (Ig) content. All piglets were individually weighed at birth and 24 hours later in order to calculate CY, and later at four weeks to calculate average daily gain (ADG). Protein, lactose and dry matter content of colostrum did not significantly differ between the two groups, while sows fed YD had higher levels of fat in their colostrum (P < 0.05). Immunoglobulin A, IgM and IgG levels in colostrum did not differ between the two groups (P >0.05). Colostrum yield was lower in the control than that in YD group (3701g vs. 4581 g; P <0.05). Although the YD supplementation did not change fecal bacteria diversity in sow, more beneficial and fermentative bacteria (Roseburia, Paraprevotella, Eubacterium) were found in the YD fed group (P <0.01) while, some opportunistic pathogens, including Proteobacteria, especially the genera Desulfovibrio, Escherichia/Shigella and Helicobacter, were suppressed. Piglets at one week of age from sows fed YD had more beneficial microbial populations with significant diversity and fewer opportunistic pathogens. Additionally, we established a Pearson's correlations between CY, colostrum components, piglet birth weight and fecal microbiota. Therefore, YD added to the sow diet during pregnancy increases colostrum availability and its energy content for neonate piglets, also promoting beneficial maternal microbial sources for neonate.


Subject(s)
Colostrum , Complex Mixtures , Dietary Supplements , Gastrointestinal Microbiome , Yeasts/chemistry , Animal Feed , Animals , Animals, Newborn , Bacteria , Biodiversity , Colostrum/chemistry , Female , Pregnancy , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...