Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39001913

ABSTRACT

PURPOSE: To develop a convolutional neural network (CNN)-based model for classifying videostroboscopic images of patients with sulcus, benign vocal fold (VF) lesions, and healthy VFs to improve clinicians' accuracy in diagnosis during videostroboscopies when evaluating sulcus. MATERIALS AND METHODS: Videostroboscopies of 433 individuals who were diagnosed with sulcus (91), who were diagnosed with benign VF diseases (i.e., polyp, nodule, papilloma, cyst, or pseudocyst [311]), or who were healthy (33) were analyzed. After extracting 91,159 frames from videostroboscopies, a CNN-based model was created and tested. The healthy and sulcus groups underwent binary classification. In the second phase of the study, benign VF lesions were added to the training set, and multiclassification was executed across all groups. The proposed CNN-based model results were compared with five laryngology experts' assessments. RESULTS: In the binary classification phase, the CNN-based model achieved 98% accuracy, 98% recall, 97% precision, and a 97% F1 score for classifying sulcus and healthy VFs. During the multiclassification phase, when evaluated on a subset of frames encompassing all included groups, the CNN-based model demonstrated greater accuracy when compared with that of the five laryngologists (%76 versus 72%, 68%, 72%, 63%, and 72%). CONCLUSION: The utilization of a CNN-based model serves as a significant aid in the diagnosis of sulcus, a VF disease that presents notable challenges in the diagnostic process. Further research could be undertaken to assess the practicality of implementing this approach in real-time application in clinical practice.

2.
J Med Syst ; 34(1): 83-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192058

ABSTRACT

In this study, a method was proposed in order to determine how well features extracted from the EEG signals for the purpose of sleep stage classification separate the sleep stages. The proposed method is based on the principle component analysis known also as the Karhunen-Loéve transform. Features frequently used in the sleep stage classification studies were divided into three main groups: (i) time-domain features, (ii) frequency-domain features, and (iii) hybrid features. That how well features in each group separate the sleep stages was determined by performing extensive simulations and it was seen that the results obtained are in agreement with those available in the literature. Considering the fact that sleep stage classification algorithms consist of two steps, namely feature extraction and classification, it will be possible to tell a priori whether the classification step will provide successful results or not without carrying out its realization thanks to the proposed method.


Subject(s)
Electroencephalography/methods , Polysomnography/methods , Principal Component Analysis/methods , Sleep Stages/physiology , Humans , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...