Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543592

ABSTRACT

This review explores different methods of sustainably introducing nutrients from agro-industrial waste into the soil. The focus is on sustainable agriculture and how the soil system can be modified by introducing secondary raw materials and beneficial microorganisms. Soil is a nexus between plants and microorganisms that must be balanced. The article emphasizes the importance of maintaining the microbiological balance when supplying nutrients. This review is focused on the possible techniques involved in the production of biofertilizers and their mode of application into the soil system and on plants. We addressed several advantages concerning the use of beneficial microorganisms in waste management by microbial formulation techniques. Not only the advantages but several limitations and challenges were also discussed in regard to the large scale production of microbial products. Therefore, the proper treatment of industrial waste is essential so that we can preserve the environment and human safety and also achieve sustainable agriculture.

2.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31896622

ABSTRACT

A streptomycete was isolated from the rhizosphere of olive trees in the autumn of 2004. Its molecular characterization showed the presence of metabolic pathways promoting plant growth and additional properties that indicate that this strain is a prospective agent for future biocontrol applications in planta We report here the draft genome sequence of Streptomyces avermitilis strain SA51.

3.
Int J Mol Sci ; 19(4)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29565834

ABSTRACT

There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.


Subject(s)
Streptomyces/physiology , Biological Control Agents , Endophytes/physiology , Pest Control, Biological , Plant Development/physiology
4.
Microbiol Res ; 184: 13-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26856449

ABSTRACT

Drought is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with drought stress. Plant growth promoting rhizobacteria (PGPR) could play a significant role in alleviation of drought stress in plants. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds, inducing accumulation of osmolytes, antioxidants, upregulation or down regulation of stress responsive genes and alteration in root morphology in acquisition of drought tolerance. The term Induced Systemic Tolerance (IST) was coined for physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses. In the present review we elaborate on the role of PGPR in helping plants to cope with drought stress.


Subject(s)
Crops, Agricultural/growth & development , Disease Resistance , Droughts , Growth Substances/metabolism , Plant Development , Plant Roots/microbiology , Stress, Physiological , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...