Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(21): 218202, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856243

ABSTRACT

In this combined experimental and simulation study, we utilize bond-order topology to quantitatively match particle volume fraction in mechanically uniformly compressed colloidal suspensions with temperature in atomistic simulations. The obtained mapping temperature is above the dynamical glass transition temperature, indicating that the colloidal systems examined are structurally most like simulated undercooled liquids. Furthermore, the structural mapping procedure offers a unifying framework for quantifying relaxation in arrested colloidal systems.

2.
ACS Nano ; 18(15): 10407-10416, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38513125

ABSTRACT

Understanding and manipulating the interactions between foreign bodies and cell membranes during endo- and phagocytosis is of paramount importance, not only for the fate of living cells but also for numerous biomedical applications. This study aims to elucidate the role of variables such as anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength in this essential process using a minimal experimental biomimetic system comprising giant unilamellar vesicles and rod-like particles with different curvatures and aspect ratios. We find that the particle wrapping process is dictated by the balance between the elastic free energy penalty and adhesion free energy gain, leading to two distinct engulfment pathways, tip-first and side-first, emphasizing the significance of the particle orientation in determining the pathway. Moreover, our experimental results are consistent with theoretical predictions in a state diagram, showcasing how to control the wrapping pathway from surfing to partial to complete wrapping by the interplay between membrane tension and adhesive strength. At moderate particle concentrations, we observed the formation of rod clusters, which exhibited cooperative and sequential wrapping. Our study contributes to a comprehensive understanding of the mechanistic intricacies of endocytosis by highlighting how the interplay between the anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength can influence the engulfment pathway.


Subject(s)
Endocytosis , Lipids , Cell Membrane/metabolism
3.
Nat Commun ; 14(1): 7896, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036561

ABSTRACT

It is commonly believed that the most efficient way to pack a finite number of equal-sized spheres is by arranging them tightly in a cluster. However, mathematicians have conjectured that a linear arrangement may actually result in the densest packing. Here, our combined experimental and simulation study provides a physical realization of the finite sphere packing problem by studying arrangements of colloids in a flaccid lipid vesicle. We map out a state diagram displaying linear, planar, and cluster conformations of spheres, as well as bistable states which alternate between cluster-plate and plate-linear conformations due to membrane fluctuations. Finally, by systematically analyzing truncated polyhedral packings, we identify clusters of 56 ≤ N ≤ 70 number of spheres, excluding N = 57 and 63, that pack more efficiently than linear arrangements.

4.
Chimia (Aarau) ; 75(1): 104, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33637158
5.
Nature ; 586(7827): 52-56, 2020 10.
Article in English | MEDLINE | ID: mdl-32999485

ABSTRACT

Biological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment1-4. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells6-11, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells.


Subject(s)
Unilamellar Liposomes/chemistry , Artificial Cells/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Microscopy, Confocal , Models, Biological , Phosphatidylcholines/chemistry
6.
Nat Commun ; 11(1): 2628, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457438

ABSTRACT

Active systems such as microorganisms and self-propelled particles show a plethora of collective phenomena, including swarming, clustering, and phase separation. Control over the propulsion direction and switchability of the interactions between the individual self-propelled units may open new avenues in designing of materials from within. Here, we present a self-propelled particle system, consisting of half-gold-coated titania (TiO2) particles, in which we can quickly and on-demand reverse the propulsion direction, by exploiting the different photocatalytic activities on both sides. We demonstrate that the reversal in propulsion direction changes the nature of the hydrodynamic interaction from attractive to repulsive and can drive the particle assemblies to undergo both fusion and fission transitions. Moreover, we show these active colloids can act as nucleation sites, and switch rapidly the interactions between active and passive particles, leading to reconfigurable assembly and disassembly. Our experiments are qualitatively described by a minimal hydrodynamic model.

7.
Sci Rep ; 7(1): 16758, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196659

ABSTRACT

The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.


Subject(s)
Colloids/chemistry , Microspheres , Models, Theoretical
8.
ACS Appl Mater Interfaces ; 9(20): 17238-17244, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28474523

ABSTRACT

External electric and magnetic fields have already been proven to be a versatile tool to control the particle assembly; however, the degree of control of the dynamics and versatility of the produced structures is expected to increase if both can be implemented simultaneously. For example, while micromagnets can rapidly assemble superparamagnetic particles, repeated, rapid disassembly or reassembly is not trivial because of the remanence and coercivity of metals used in such applications. Here, an interdigitated design of micromagnet and microfabricated electrodes enables rapid switching of colloids between their magnetic and electric potential minima. Active control over colloids between two such adjacent potential minima enables a fast on/off mechanism, which is potentially important for optical switches or display technologies. Moreover, we demonstrate that the response time of the colloids between these states is on the order of tens of milliseconds, which is tunable by electric field strength. By carefully designing the electrode pattern, our strategy enables the switchable assembly of single particles down to few microns and also hierarchical assemblies containing many particles. Our work on precise dynamic control over the particle position would open new avenues to find potential applications in optical switches and display technologies.

9.
Soft Matter ; 12(48): 9657-9665, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27869286

ABSTRACT

In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H2O2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.

10.
Nano Lett ; 15(8): 5617-23, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26237212

ABSTRACT

A growing demand for control over the interparticle spacing and the orientation of anisotropic metallic particles into self-assembled structures is fuelled by their use in potential applications such as in plasmonics, catalysis, sensing, and optoelectronics. Here, we present an improved high yield synthesis method to fabricate micron- and submicron-sized gold nanoplatelets with a thickness less than 20 nm using silver nanoplatelets as seeds. By tuning the depth of the secondary minimum in the DLVO interaction potential between these particles, we are able to assemble the platelets into dynamic and flexible stacks containing thousands of platelets arranged face-to-face with well-defined spacing. Moreover, we demonstrate that the length of the stacks, and the interplate distance can be controlled between tens and hundreds of nm with the ionic strength. We use a high frequency external electric field to control the orientation of the stacks and direct the stacks into highly organized 2D and 3D assemblies that strongly polarize light.

11.
Angew Chem Int Ed Engl ; 53(50): 13830-4, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25366869

ABSTRACT

Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials.

12.
Soft Matter ; 10(45): 9110-9, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25311761

ABSTRACT

When a suspension of colloidal particles is placed in an oscillating electric field, the contrast in dielectric constant between the particles and the solvent induces a dipole moment in each of the colloidal particles. The resulting dipole-dipole interactions can strongly influence the phase behavior of the system. We investigate the phase behavior of cube-shaped colloidal particles in electric fields, using both experiments and Monte Carlo simulations. In addition to a string fluid phase and a body centered tetragonal (BCT) crystal phase, we observe a columnar phase consisting of hexagonally ordered strings of rotationally disordered cubes. By simulating the system for a range of pressures and electric field strengths, we map out the phase diagram, and compare the results to the experimentally observed phases. Additionally, we estimate the accuracy of a point-dipole approximation on the alignment of cubes in string-like clusters.

13.
J Phys Condens Matter ; 24(46): 464113, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23114053

ABSTRACT

Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic) field. The resulting dipolar interactions can lead to aggregation of the particles into string-like clusters. Recently, several methods have been developed to make these structures permanent. However, especially when multiple particle sizes and/or more complex shapes than single spheres are used, the parameter space for these experiments is enormous. We therefore use Monte Carlo simulations to investigate the structure of the self-assembled string-like aggregates in binary mixtures of dipolar hard and charged spheres, as well as dipolar hard asymmetric dumbbells. Binary mixtures of spheres aggregate in different types of clusters depending on the size ratio of the spheres. For highly asymmetric systems, the small spheres form ring-like and flame-like clusters around strings of large spheres, while for size ratios closer to 1, alternating strings of both large and small spheres are observed. For asymmetric dumbbells, we investigate both the effect of size ratio and dipole moment ratio, leading to a large variety of cluster shapes, including chiral clusters.

14.
Angew Chem Int Ed Engl ; 51(45): 11249-53, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22893362

ABSTRACT

Yanking the chain: a general method for the preparation of colloidal analogues of polymer chains was developed. The flexibility of these chains can be tuned by applying electric fields in combination with their subjection to simple linkage-forming procedures.

15.
Adv Mater ; 24(3): 412-6, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22162100

ABSTRACT

A facile method is demonstrated for bonding assembled colloids without loss of colloidal stability by thermal annealing. Examples include both close-packed and non-close-packed structures. The confocal microscopy image shows a cross-section of a 3D labyrinthine structure after it was made permanent. The 3D network is completely preserved after the annealing step.


Subject(s)
Colloids/chemistry , Cesium/chemistry , Chlorides/chemistry , Electricity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...