Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; 25(3): 621-630, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32654659

ABSTRACT

Introduction: Neuropeptide Y (NPY) signaling in the brain plays an important role in energy regulation, and is altered during diet-induced obesity. Yet, NPY function during the consumption of specific diet components remains to be fully determined. We have previously demonstrated that consumption of a saturated fat component (free-choice high-fat; fcHF), a sucrose solution (high-sugar; fcHS), or both (fcHFHS) combined with a standard diet (chow and water) has diverse effects on Npy expression in the arcuate nucleus and the sensitivity to intraventricular NPY administration. Arcuate NPY neurons project to the lateral hypothalamus (LHA), and NPY administration in the LHA potently promotes chow intake in rats on a standard diet. However, it is currently unclear if short-term consumption of a palatable free-choice diet alters NPY function in the LHA. Therefore, we assessed the effects of intra-LHA NPY administration on intake in rats following one-week consumption of a fcHF, fcHS, or fcHFHS diet.Methods: Male Wistar rats consumed a fcHF, fcHS, fcHFHS, or control (CHOW) diet for one week before NPY (0.3 µg / 0.3 µL) or phosphate-buffered saline (0.3 µL) was administered into the LHA. Intake was measured 2h later. fcHFHS-fed rats were divided into high-fat (fcHFHS-hf) and low-fat (fcHFHS-lf) groups based on differences in basal fat intake.Results: Intra-LHA NPY administration increased chow intake in fcHFHS- (irrespective of basal fat intake), fcHF- and CHOW-fed rats. Intra-LHA NPY infusion increased fat intake in fcHF-, fcHFHS-hf, but not fcHFHS-lf, rats. Intra-LHA NPY infusion did not increase caloric intake in fcHS-fed rats.Discussion: Our data demonstrate that the effects of intra-LHA NPY on caloric intake differ depending on the consumption of a fat or sugar component, or both, in a free-choice diet. Our data also indicate that baseline preference for the fat diet component modulates the effects of intra-LHA NPY in fcHFHS-fed rats.


Subject(s)
Hypothalamic Area, Lateral , Neuropeptide Y , Animals , Diet, High-Fat , Hypothalamic Area, Lateral/metabolism , Hypothalamus/metabolism , Male , Neuropeptide Y/metabolism , Rats , Rats, Wistar , Sucrose
2.
J Comp Neurol ; 527(16): 2659-2674, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30950054

ABSTRACT

The hypothalamic neuropeptide Y (NPY) circuitry is a key regulator of feeding behavior. NPY also acts in the mesolimbic dopaminergic circuitry, where it can increase motivational aspects of feeding behavior through effects on dopamine output in the nucleus accumbens (NAc) and on neurotransmission in the ventral tegmental area (VTA). Endogenous NPY in the NAc originates from local interneurons and afferent projections from the hypothalamic arcuate nucleus (Arc). However, the origin of endogenous NPY in the VTA is unknown. We determined, in normal-weight male Wistar rats, if the source of VTA NPY is local, and/or whether it is derived from VTA-projecting neurons. Immunocytochemistry, in situ hybridization and RT-qPCR were utilized, when appropriate in combination with colchicine treatment or 24 hr fasting, to assess NPY/Npy expression locally in the VTA. Retrograde tracing using cholera toxin beta (CTB) in the VTA, fluorescent immunocytochemistry and confocal microscopy were used to determine NPY-immunoreactive afferents to the VTA. NPY in the VTA was observed in fibers, but not following colchicine pretreatment. No NPY- or Npy-expressing cell bodies were observed in the VTA. Fasting for 24 hr, which increased Npy expression in the Arc, failed to induce Npy expression in the VTA. Double-labeling with CTB and NPY was observed in the Arc and in the ventrolateral medulla. Thus, VTA NPY originates from the hypothalamic Arc and the ventrolateral medulla of the brainstem in normal-weight male Wistar rats. These afferent connections link hypothalamic and brainstem processing of physiologic state to VTA-driven motivational behavior.


Subject(s)
Neurons, Afferent/cytology , Neurons, Afferent/metabolism , Neuropeptide Y/metabolism , Ventral Tegmental Area/cytology , Ventral Tegmental Area/metabolism , Afferent Pathways/cytology , Afferent Pathways/metabolism , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Immunohistochemistry , Male , Medulla Oblongata/cytology , Medulla Oblongata/metabolism , Microscopy, Confocal , Neuroanatomical Tract-Tracing Techniques , Pro-Opiomelanocortin/metabolism , Rats, Wistar
3.
Front Mol Neurosci ; 12: 31, 2019.
Article in English | MEDLINE | ID: mdl-30837840

ABSTRACT

Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...