Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(9): 9291-9300, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30741532

ABSTRACT

We investigated the insertion-extraction behaviors of Li and Na ions in graphitic materials using solid-state NMR. A unique advantage of high-degree 13C-isotope enrichment of graphitic material allowed sensitive and metastable graphite intercalation compounds to be measured in a short time. Ex situ 13C magic-angle spinning NMR spectra of 13C fine-grained graphite are presented as a function of state-of-charge. The observations are discussed with respect to graphite intercalation phenomena, which include the effects of charge transfer and the demagnetizing field. Dramatic narrowing of the 13C NMR signal in metal-intercalated graphite evidences quasi-complete charge transfer occurring between lithium and graphite host material and resulting in reducing the macroscopic field effects. Upon Na insertion, incomplete charge transfer is observed and explained by inaccessibility of graphitic interlayer space for Na ions in our study. In addition, critical issues of reversibility of Li- and Na-ion electrochemical cells and solid electrolyte interphase formation are considered on the atomic scale. The knowledge gained in the present work can be applied to advanced high-power-density electrode materials for safe and fast-charging metal-ion batteries or for novel spintronic concepts with controlled spin-polarized charge carrier injection and transport combined with the possibility to manipulate magnetic anisotropy.

2.
Sci Rep ; 5: 15797, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26515127

ABSTRACT

The mesocrystal system fluoroapatite-gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO4(3-) groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.


Subject(s)
Apatites/chemistry , Biomimetic Materials/chemistry , Gelatin/chemistry , Magnetic Resonance Spectroscopy , Crystallization , Hydrogen Bonding , Microscopy, Electron, Scanning , Nanocomposites/chemistry
3.
J Phys Chem B ; 118(3): 724-30, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24354406

ABSTRACT

The model system fluorapatite-gelatin allows mimicking the formation conditions on a lower level of complexity compared to natural dental and bone tissues. Here, we report on solid-state NMR investigations to examine the structure of fluorapatite-gelatin nanocomposites on a molecular level with particular focus on organic-inorganic interactions. Using (31)P, (19)F, and (1)H MAS NMR and heteronuclear correlations, we found the nanocomposite to consist of crystalline apatite-like regions (fluorapatite and hydroxyfluorapatite) in close contact with a more dissolved (amorphous) layer containing first motifs of the apatite crystal structure as well as the organic component. A scheme of the intergrowth region in the fluorapatite-gelatin nanocomposite, where mineral domains interact with organic matrix, is presented.


Subject(s)
Apatites/chemistry , Biomimetic Materials/chemistry , Gelatin/chemistry , Nanocomposites/chemistry , Magnetic Resonance Spectroscopy
4.
Biomed Mater Eng ; 23(6): 507-12, 2013.
Article in English | MEDLINE | ID: mdl-24165553

ABSTRACT

High-resolution solid-state NMR based on combined rotation and multipulse spectroscopy (CRAMPS) has been applied to study chemical structures of dental tissues. The samples of human enamel, crown dentine and root dentin studied in this work were used without chemical pre-treatment. The quantitative ¹H NMR spectra permit an assignment to different structures and a quantification of the content of hydroxyl groups. While there is 40% hydroxyl content in the enamel, there is significantly less in the dentin, 14% in the crown and 9% in the root. Thus this study provides the direct evidence of OH⁻ ion deficiency in all dental tissues supporting earlier findings that bone and dental mineral apatite is poorly hydroxylated.


Subject(s)
Dental Enamel/chemistry , Dentin/chemistry , Hydroxides/analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Tooth Crown/chemistry , Tooth Root/chemistry , Child , Humans , Male
5.
J Am Chem Soc ; 133(14): 5397-412, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21417255

ABSTRACT

We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles.

6.
Magn Reson Chem ; 48(11): 877-81, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20845364

ABSTRACT

First-principles quantum mechanical calculations of NMR chemical shifts and quadrupolar parameters have been carried out to assign the (27)Al MAS NMR resonances in gibbsite. The (27)Al NMR spectrum shows two signals for octahedral aluminum revealing two aluminum sites coordinated by six hydroxyl groups each, although the crystallographic positions of the two Al sites show little difference. The presence of two distinguished (27)Al NMR resonances characterized by rather similar chemical shifts but quadrupolar coupling constants differing by roughly a factor of two is explained by different character of the hydrogen bonds, in which the hydroxyls forming the corresponding octahedron around each aluminum site, are involved. The Al-I site characterized by a C(Q) = 4.6 MHz is surrounded by OH-groups participating in four intralayer and two interlayer hydrogen bonds, while the Al-II site with the smaller quadrupolar constant (2.2 MHz) is coordinated by hydroxides, of which two point toward the intralayer cavities and four OH-bonds are aligned toward the interlayer gallery. In high-resolution solid-state (1)H CRAMPS (combination of rotation and multiple-pulse spectroscopy) four signals with an intensity ratio of 1:2:2:1 are resolved which allow to distinguish six nonequivalent hydrogen sites reported in the gibbsite crystal structure and to ascribe them to two types of structural OH groups associated with intralayer and interlayer hydrogen bonds. This study can be applied to characterize the gibbsite-like layer-intergallery interactions associated with hydrogen bonding in the more complex systems, such as synthetic aluminum layered double hydroxides.


Subject(s)
Aluminum Hydroxide/chemistry , Aluminum/chemistry , Computer Simulation , Crystallography , Hydrogen Bonding , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Quantum Theory , Reference Standards
7.
Solid State Nucl Magn Reson ; 36(1): 19-23, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19477101

ABSTRACT

(27)Al solid-state NMR has been applied to study the local structure of pristine and chemically modified aluminium layered double hydroxides (LDH). The pristine LDH only shows six-fold coordinated, octahedral, aluminium, while the calcined and subsequently surfactant treated LDH sample shows a significant fraction of four-fold coordinated tetrahedral aluminium. The co-existence of two types of octahedral sites with different quadrupolar parameters is clearly observed in both samples. Quadrupolar coupling constants and isotropic chemical shifts have been measured from the (27)Al triple-quantum MAS NMR allowing to fit the (27)Al MAS spectra and quantify the different species in the samples. The quantitative analysis reveals that 30% of the aluminium is in four-fold coordination in the surfactant-modified LDH. We show that this chemical modification retains the two types of AlO(6) sites with a decreased intensity of the site showing the lowest quadrupolar coupling constant.

8.
Nanomedicine (Lond) ; 3(3): 321-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18510427

ABSTRACT

AIMS: A carbon-wrapped nanoscaled thermometer for a contactless temperature control in biological systems on the cellular level is presented. MATERIALS & METHODS: The thermometer is based on multiwalled carbon nanotubes (MWCNTs) filled with materials with strongly temperature-dependent nuclear magnetic resonance (NMR) parameters. The NMR frequency shift and relaxation time were measured in cuprous-iodide-filled CNTs at different temperatures. RESULTS: The experimental data indicate a pronounced temperature dependence of the NMR parameters, thereby realizing the nanoscaled thermometer. CONCLUSION: This study is a proof-of-concept that the functionalized CNTs can be used as a contactless thermometer in biomedical applications.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Thermometers , Transducers , Biology/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Feedback , Reproducibility of Results , Sensitivity and Specificity
9.
Phys Chem Chem Phys ; 9(35): 4843-53, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17912415

ABSTRACT

In the last fifteen years several novel porous silica materials, which are periodically structured on the mesoscopic length scale, have been synthesized. They are of broad interest for fundamental studies of surface-substrate interactions, for studies of the dynamics of guest molecules in confinement and for studies of the effect of confinement on the structural and thermophysical properties of fluids. Examples of such confinement effects include the change of the freezing and melting points or glass transitions of the confined liquids. These effects are studied by combinations of several NMR techniques, such as (15)N- and (2)H-solid-state NMR line shape analysis, MAS NMR and NMR diffusometry with physico-chemical characterization techniques such as nitrogen adsorption and small angle diffraction of neutrons or X-rays. This combination does not require crystalline samples or special clean and well defined surfaces such as conventional surface science techniques, but can work with typical ill-defined real world systems. The review discusses, after a short introduction, the salient features of these materials and the applied NMR experiments to give the reader a basic knowledge of the systems and the experiments. The rest of the review then focuses on the structural and dynamical properties of guest molecules confined in the mesoporous silica. It is shown that the confinement into the pores leads to fascinating new features of the guests, which are often not known for their bulk phases. These features depend strongly on the interplay of the their interactions with the silica surface and their mutual interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...