Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Nucl Med ; 48(3): 213-220, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36723880

ABSTRACT

PURPOSE: This study evaluated the performance of a drop-in gamma probe for prostate cancer (PCa) sentinel lymph node dissection (SLND) in a pelvic phantom, porcine model, and in PCa patients as part of an ongoing prospective multicenter clinical trial. METHODS: Two design variants of the drop-in gamma probe (SENSEI; Lightpoint Medical Ltd) were assessed in the pelvic phantom, and the preferred design was evaluated in a porcine model with clinically representative volumes and 99mTc activities. In the clinical trial, radical prostatectomy, SLND, and extended pelvic lymph node dissection were performed the day after 99mTc-nanocolloid injection and imaging. Sentinel lymph nodes (SLNs) were detected with the drop-in probe and a rigid laparoscopic gamma probe (RLGP). An interim analysis was performed after 10 patients were recruited. RESULTS: The narrow field of view probe design outperformed the wide field of view design in the pelvic phantom (detection rate, 100% vs 50%). In the porcine model, all activity concentrations could be successfully detected. The drop-in gamma probe successfully detected SLNs in all 10 patients (detection rate, 100%). Two of the SLNs identified by the drop-in gamma probe could not be found with the RLGP. No false-negative cases and no adverse events related to the SLND procedure or the drop-in gamma probe occurred. CONCLUSION: The drop-in gamma probe meets the usability and performance requirements for SLND in PCa and provides performance advantages over the RLGP. The final clinical study results will confirm the performance of the technique across multiple sites.


Subject(s)
Prostatic Neoplasms , Sentinel Lymph Node , Male , Humans , Animals , Swine , Sentinel Lymph Node Biopsy/methods , Lymph Nodes/pathology , Prospective Studies , Lymph Node Excision/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/surgery , Sentinel Lymph Node/pathology , Neoplasm Staging
2.
IEEE Trans Med Robot Bionics ; 4(2): 335-338, 2022 May.
Article in English | MEDLINE | ID: mdl-36148137

ABSTRACT

Surgical instrument segmentation and depth estimation are crucial steps to improve autonomy in robotic surgery. Most recent works treat these problems separately, making the deployment challenging. In this paper, we propose a unified framework for depth estimation and surgical tool segmentation in laparoscopic images. The network has an encoder-decoder architecture and comprises two branches for simultaneously performing depth estimation and segmentation. To train the network end to end, we propose a new multi-task loss function that effectively learns to estimate depth in an unsupervised manner, while requiring only semi-ground truth for surgical tool segmentation. We conducted extensive experiments on different datasets to validate these findings. The results showed that the end-to-end network successfully improved the state-of-the-art for both tasks while reducing the complexity during their deployment.

3.
IEEE Trans Radiat Plasma Med Sci ; 6(4): 446-453, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35419499

ABSTRACT

The challenge in delineating the boundary between cancerous and healthy tissue during cancer resection surgeries can be addressed with the use of intraoperative probes to detect cancer cells labeled with radiotracers to facilitate excision. In this study, deep learning algorithms for background gamma ray signal rejection were explored for an intraoperative probe utilizing CMOS monolithic active pixel sensors optimized toward the detection of internal conversion electrons from [Formula: see text]Tc. Two methods utilizing convolutional neural networks (CNNs) were explored for beta-gamma discrimination: 1) classification of event clusters isolated from the sensor array outputs (SAOs) from the probe and 2) semantic segmentation of event clusters within an acquisition frame of an SAO which provides spatial information on the classification. The feasibility of the methods in this study was explored with several radionuclides including 14C, 57Co, and [Formula: see text]Tc. Overall, the classification deep network is able to achieve an improved area under the curve (AUC) of the receiver operating characteristic (ROC), giving 0.93 for 14C beta and [Formula: see text]Tc gamma clusters, compared to 0.88 for a more conventional feature-based discriminator. Further optimization of the lower left region of the ROC by using a customized AUC loss function during training led to an improvement of 31% in sensitivity at low false positive rates compared to the conventional method. The segmentation deep network is able to achieve a mean dice score of 0.93. Through the direct comparison of all methods, the classification method was found to have a better performance in terms of the AUC.

4.
Nat Biomed Eng ; 6(5): 559-568, 2022 05.
Article in English | MEDLINE | ID: mdl-35411113

ABSTRACT

In oncology, the feasibility of Cerenkov luminescence imaging (CLI) has been assessed by imaging superficial lymph nodes in a few patients undergoing diagnostic 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). However, the weak luminescence signal requires the removal of ambient light. Here we report the development of a clinical CLI fiberscope with a lightproof enclosure, and the clinical testing of the setup using five different radiotracers. In an observational prospective trial (ClinicalTrials.gov identifier NCT03484884 ) involving 96 patients with existing or suspected tumours, scheduled for routine clinical FDG PET or 131I therapy, the level of agreement of CLI with standard-of-care imaging (PET or planar single-photon emission CT) for tumour location was 'acceptable' or higher (≥3 in the 1-5 Likert scale) for 90% of the patients. CLI correlated with the concentration of radioactive activity, and captured therapeutically relevant information from patients undergoing targeted radiotherapy or receiving the alpha emitter 223Ra, which cannot be feasibly imaged clinically. CLI could supplement radiological scans, especially when scanner capacity is limited.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasms , Humans , Luminescence , Luminescent Measurements/methods , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Prospective Studies
5.
J Nucl Med ; 63(1): 29-35, 2022 01.
Article in English | MEDLINE | ID: mdl-33931467

ABSTRACT

Cerenkov luminescence imaging (CLI) is a novel imaging technology that might have the ability to assess surgical margins intraoperatively during prostatectomy using 68Ga-prostate-specific membrane antigen (68Ga-PSMA-11). This study evaluated the accuracy of CLI compared with histopathology and, as an exploratory objective, investigated the characteristics of the identified chemiluminescence signal. Methods: After intravenous injection of a mean 68Ga-PSMA-11 activity of 69 MBq intraoperatively, all excised specimens were imaged with CLI. Areas of increased signal were marked for histopathologic comparison and scored for the likelihood of being a positive surgical margin (PSM) using a 5-point Likert scale. In addition, the chemiluminescence signal was investigated in 3 radioactive and 3 nonradioactive specimens using CLI. Results: In 15 patients, the agreement between CLI and histopathology was 60%; this improved to 83% when including close surgical margins (≤1 mm). In 6 hot spots, CLI correctly identified PSMs on histopathology, located at the apex and mid prostate. In all 15 patients, an increased signal at the prostate base was observed, without the presence of the primary tumor in this area in 8 patients. This chemiluminescence signal was also observed in nonradioactive prostate specimens, with a half-life of 48 ± 11 min. The chemiluminescence hampered the visual interpretation of 4 PSMs at the base. Conclusion: CLI was able to correctly identify margin status, including close margins, in 83% of the cases. The presence of a diathermy-induced chemiluminescent signal hampered image interpretation, especially at the base of the prostate. In the current form, CLI is most applicable to detect PSMs and close margins in the apex and mid prostate.


Subject(s)
Gallium Isotopes , Gallium Radioisotopes
6.
Sci Rep ; 11(1): 24002, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907289

ABSTRACT

Cerenkov luminescence imaging (CLI) is a promising approach to image-guided surgery and pathological sampling. It could offer additional advantages when combined to whole-body isotope tomographies. We aimed to obtain evidence of its applicability in lymphoma patho-diagnostics, thus we decided to investigate the radiodiagnostic potential of combined PET or SPECT/CLI in an experimental, novel spontaneous high-grade B-cell lymphoma mouse model (Bc.DLFL1). We monitored the lymphoma dissemination at early stage, and at clinically relevant stages such as advanced stage and terminal stage with in vivo 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) and 67Ga-citrate single photon emission computed tomography (SPECT)/MRI. In vivo imaging was combined with ex vivo high resolution CLI. The use of CLI with 18F-Fluorine (F-18) and 67Ga-Gallium isotopes in the selection of infiltrated lymph nodes for tumor staging and pathology was thus tested. At advanced stage, FDG PET/MRI plus ex vivo CLI allowed accurate detection of FDG accumulation in lymphoma-infiltrated tissues. At terminal stage we detected tumorous lymph nodes with SPECT/MRI and we could report in vivo detection of the Cerenkov light emission of 67Ga. CLI with 67Ga-citrate revealed lymphoma accumulation in distant lymph node locations, unnoticeable with only MRI. Flow cytometry and immunohistochemistry confirmed these imaging results. Our study promotes the combined use of PET and CLI in preclinical studies and clinical practice. Heterogeneous FDG distribution in lymph nodes, detected at sampling surgery, has implications for tissue pathology processing and it could direct therapy. The results with 67Ga also point to the opportunities to further apply suitable SPECT radiopharmaceuticals for CLI.


Subject(s)
Fluorodeoxyglucose F18/pharmacology , Gallium Radioisotopes/pharmacology , Luminescent Measurements , Lymphoma/diagnostic imaging , Neoplasms, Experimental/diagnostic imaging , Positron-Emission Tomography , Animals , Mice , Mice, Inbred BALB C
7.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922728

ABSTRACT

Bc-DLFL.1 is a novel spontaneous, high-grade transplantable mouse B-cell lymphoma model for selective serosal propagation. These cells attach to the omentum and mesentery and show dissemination in mesenteric lymph nodes. We aimed to investigate its early stage spread at one day post-intraperitoneal inoculation of lymphoma cells (n = 18 mice), and its advanced stage at seven days post-inoculation with in vivo [18F]FDG-PET and [18F]PET/MRI, and ex vivo by autoradiography and Cherenkov luminescence imaging (CLI). Of the early stage group, nine animals received intraperitoneal injections, and nine received intravenous [18F]FDG injections. The advanced stage group (n = 3) received intravenous FDG injections. In the early stage, using autoradiography we observed a marked accumulation in the mesentery after intraperitoneal FDG injection. Using other imaging methods and autoradiography, following the intravenous injection of FDG no accumulations were detected. At the advanced stage, tracer accumulation was clearly detected in mesenteric lymph nodes and in the peritoneum after intravenous administration using PET. We confirmed the results with immunohistochemistry. Our results in this model highlight the importance of local FDG administration during diagnostic imaging to precisely assess early peritoneal manifestations of other malignancies (colon, stomach, ovary). These findings also support the importance of applying topical therapies, in addition to systemic treatments in peritoneal cancer spread.


Subject(s)
Disease Models, Animal , Glucose/metabolism , Lymphoma/pathology , Multimodal Imaging/methods , Animals , Fluorodeoxyglucose F18/metabolism , Injections, Intraperitoneal , Lymphatic Metastasis , Lymphoma/diagnostic imaging , Mice , Mice, Inbred BALB C , Neoplasm Micrometastasis , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Tomography, X-Ray Computed/methods
8.
EJNMMI Res ; 11(1): 28, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33738563

ABSTRACT

INTRODUCTION: In women undergoing breast-conserving surgery (BCS), 20-25% require a re-operation as a result of incomplete tumour resection. An intra-operative technique to assess tumour margins accurately would be a major advantage. A novel method for intraoperative margin assessment was developed by applying a thin flexible scintillating film to specimens-flexible autoradiography (FAR) imaging. A single-arm, multi-centre study was conducted to evaluate the feasibility of intraoperative [18F]FDG FAR for the assessment of tumour margins in BCS. METHODS: Eighty-eight patients with invasive breast cancer undergoing BCS received ≤ 300 MBq of [18F]FDG 60-180 min pre-operatively. Following surgical excision, intraoperative FAR imaging was performed using the LightPath® Imaging System. The first 16 patients were familiarisation patients; the remaining 72 patients were entered into the main study. FAR images were analysed post-operatively by three independent readers. Areas of increased signal intensity were marked, mean normalised radiances and tumour-to-tissue background (TBR) determined, agreement between histopathological margin status and FAR assessed and radiation dose to operating theatre staff measured. Subgroup analyses were performed for various covariates, with thresholds set based on ROC curves. RESULTS: Data analysis was performed on 66 patients. Intraoperative margin assessment using FAR was completed on 385 margins with 46.2% sensitivity, 81.7% specificity, 8.1% PPV, 97.7% NPV and an overall accuracy of 80.5%, detecting both invasive carcinoma and DCIS. A subgroup analysis based on [18F]FDG activity present at time of imaging revealed an increased sensitivity (71.4%), PPV (9.3%) and NPV (98.4%) in the high-activity cohort with mean tumour radiance and TBR of 126.7 ± 45.7 photons/s/cm2/sr/MBq and 2.1 ± 0.5, respectively. Staff radiation exposure was low (38.2 ± 38.1 µSv). CONCLUSION: [18F]FDG FAR is a feasible and safe technique for intraoperative tumour margin assessment. Further improvements in diagnostic performance require optimising the method for scintillator positioning and/or the use of targeted radiopharmaceuticals. TRIAL REGISTRATION: Identifier: NCT02666079. Date of registration: 28 January 2016. URL: https://clinicaltrials.gov/ct2/show/NCT02666079 . ISRCTN registry: Reference: ISRCTN17778965. Date of registration: 11 February 2016. URL: http://www.isrctn.com/ISRCTN17778965 .

9.
Int J Comput Assist Radiol Surg ; 15(8): 1389-1397, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32556919

ABSTRACT

PURPOSE: In surgical oncology, complete cancer resection and lymph node identification are challenging due to the lack of reliable intraoperative visualization. Recently, endoscopic radio-guided cancer resection has been introduced where a novel tethered laparoscopic gamma detector can be used to determine the location of tracer activity, which can complement preoperative nuclear imaging data and endoscopic imaging. However, these probes do not clearly indicate where on the tissue surface the activity originates, making localization of pathological sites difficult and increasing the mental workload of the surgeons. Therefore, a robust real-time gamma probe tracking system integrated with augmented reality is proposed. METHODS: A dual-pattern marker has been attached to the gamma probe, which combines chessboard vertices and circular dots for higher detection accuracy. Both patterns are detected simultaneously based on blob detection and the pixel intensity-based vertices detector and used to estimate the pose of the probe. Temporal information is incorporated into the framework to reduce tracking failure. Furthermore, we utilized the 3D point cloud generated from structure from motion to find the intersection between the probe axis and the tissue surface. When presented as an augmented image, this can provide visual feedback to the surgeons. RESULTS: The method has been validated with ground truth probe pose data generated using the OptiTrack system. When detecting the orientation of the pose using circular dots and chessboard dots alone, the mean error obtained is [Formula: see text] and [Formula: see text], respectively. As for the translation, the mean error for each pattern is 1.78 mm and 1.81 mm. The detection limits for pitch, roll and yaw are [Formula: see text] and [Formula: see text]-[Formula: see text]-[Formula: see text] . CONCLUSION: The performance evaluation results show that this dual-pattern marker can provide high detection rates, as well as more accurate pose estimation and a larger workspace than the previously proposed hybrid markers. The augmented reality will be used to provide visual feedback to the surgeons on the location of the affected lymph nodes or tumor.


Subject(s)
Laparoscopy/methods , Prostatic Neoplasms/surgery , Surgery, Computer-Assisted/methods , Gamma Rays , Humans , Male , Minimally Invasive Surgical Procedures/methods
10.
Nano Lett ; 20(5): 3642-3650, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32250635

ABSTRACT

Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni-Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.

11.
Eur J Nucl Med Mol Imaging ; 47(11): 2624-2632, 2020 10.
Article in English | MEDLINE | ID: mdl-32242253

ABSTRACT

PURPOSE: Currently, approximately 11-38% of prostate cancer (PCa) patients undergoing radical prostatectomy have a positive surgical margin (PSM) on histopathology. Cerenkov luminescence imaging (CLI) using 68Ga-prostate-specific membrane antigen (68Ga-PSMA) is a novel technique for intraoperative margin assessment. The aim of this first-in-man study was to investigate the feasibility of intraoperative 68Ga-PSMA CLI. In this study, feasibility was defined as the ability to distinguish between a positive and negative surgical margin, imaging within 45 min and low radiation exposure to staff. METHODS: Six patients were included in this ongoing study. Following perioperative i.v. injection of ~ 100 MBq 68Ga-PSMA, the prostate was excised and immediately imaged ex vivo. Different acquisition protocols were tested, and hotspots on CLI images from the intact prostate were marked for comparison with histopathology. RESULTS: By using an acquisition protocol with 150 s exposure time, 8 × 8 binning and a 550 nm shortpass filter, PSMs and negative surgical margins (NSMs) were visually correctly identified on CLI in 3 of the 5 patients. Two patients had a hotspot on CLI from cancer < 0.1 mm from the excision margin. CONCLUSION: Overall, the study showed that 68Ga-PSMA CLI is a feasible and low-risk technique for intraoperative margin assessment in PCa. The remaining patients in this ongoing study will be used to assess the diagnostic accuracy of the technique. TRIAL REGISTRATION: NL8256 registered at www.trialregister.nl on 04/11/20109.


Subject(s)
Luminescence , Prostatic Neoplasms , Edetic Acid/analogs & derivatives , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Oligopeptides , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging
12.
J Nucl Med ; 58(6): 891-898, 2017 06.
Article in English | MEDLINE | ID: mdl-27932562

ABSTRACT

In early-stage breast cancer, the primary treatment option for most women is breast-conserving surgery (BCS). There is a clear need for more accurate techniques to assess resection margins intraoperatively, because on average 20% of patients require further surgery to achieve clear margins. Cerenkov luminescence imaging (CLI) combines optical and molecular imaging by detecting light emitted by 18F-FDG. Its high-resolution and small size imaging equipment make CLI a promising technology for intraoperative margin assessment. A first-in-human study was conducted to evaluate the feasibility of 18F-FDG CLI for intraoperative assessment of tumor margins in BCS. Methods: Twenty-two patients with invasive breast cancer received 18F-FDG (5 MBq/kg) 45-60 min before surgery. Sentinel lymph node biopsy was performed using an increased 99mTc-nanocolloid activity of 150 MBq to facilitate nodal detection against the γ-probe background signal (cross-talk) from 18F-FDG. The cross-talk and 99mTc dose required was evaluated in 2 lead-in studies. Immediately after excision, specimens were imaged intraoperatively in an investigational CLI system. The first 10 patients were used to optimize the imaging protocol; the remaining 12 patients were included in the analysis dataset. Cerenkov luminescence images from incised BCS specimens were analyzed postoperatively by 2 surgeons blinded to the histopathology results, and mean radiance and margin distance were measured. The agreement between margin distance on CLI and histopathology was assessed. Radiation doses to staff were measured. Results: Ten of the 12 patients had an elevated tumor radiance on CLI. Mean radiance and tumor-to-background ratio were 560 ± 160 photons/s/cm2/sr and 2.41 ± 0.54, respectively. All 15 assessable margins were clear on CLI and histopathology. The agreement in margin distance and interrater agreement was good (κ = 0.81 and 0.912, respectively). Sentinel lymph nodes were successfully detected in all patients. The radiation dose to staff was low; surgeons received a mean dose of 34 ± 15 µSv per procedure. Conclusion: Intraoperative 18F-FDG CLI is a promising, low-risk technique for intraoperative assessment of tumor margins in BCS. A randomized controlled trial will evaluate the impact of this technique on reexcision rates.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Fluorodeoxyglucose F18 , Luminescent Measurements/methods , Margins of Excision , Mastectomy, Segmental/methods , Adult , Aged , Feasibility Studies , Female , Humans , Middle Aged , Monitoring, Intraoperative/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Reproducibility of Results , Sensitivity and Specificity , Surgery, Computer-Assisted/methods , Treatment Outcome
13.
Biosensors (Basel) ; 5(2): 172-86, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25849347

ABSTRACT

We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterize the complex domain structures by displaying the real component, the amplitude and the phase of the sensor's impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques.


Subject(s)
Biosensing Techniques/instrumentation , Microscopy, Scanning Tunneling/instrumentation , Magnetic Fields
14.
Lab Chip ; 12(24): 5272-8, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23128508

ABSTRACT

Microarrays and suspension-based assay technologies have attracted significant interest over the past decade with applications ranging from medical diagnostics to high throughput molecular biology. The throughput and sensitivity of a microarray will always be limited by the array density and slow reaction kinetics. Suspension (or bead) based technologies offer a conceptually different approach, improving detection by substituting a fixed plane of operation with many individually distinguishable microcarriers. In addition to all the features of a suspension based assay technology, our technology offers a rewritable label. This has the potential to be truly revolutionary by opening up the possibility of generating, on chip, extensive labelled molecular libraries. We unveil our latest SU-8 microcarrier design with embedded magnetic films that can be utilized for both magnetic and optical labelling. The novel design significantly simplifies fabrication and additionally incorporates a gold cap to provide a dual surface, bi-functional architecture. The microcarriers are fabricated using deep-ultraviolet lithography techniques and metallic thin film growth by evaporation. The bi-functional properties of the microcarriers will allow us to use each microcarrier as its own positive control thereby increasing the reliability of our technology. Here we present details of the design, fabrication, magnetic detection and functionalization of these microcarriers.


Subject(s)
Biological Assay/methods , Epoxy Compounds/chemistry , Gold/chemistry , Magnets/chemistry , Microarray Analysis/methods , Biological Assay/instrumentation , Equipment Design , Microarray Analysis/instrumentation , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...