Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 136(2): 500-13, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24014653

ABSTRACT

Non-dioxin like polychlorinated biphenyls (NDL-PCBs) are legacy environmental contaminants with contemporary unintentional sources. NDL-PCBs interact with ryanodine receptors (RyRs), Ca(2+) channels of sarcoplasmic/endoplasmic reticulum (SR/ER) that regulate excitation-contraction coupling (ECC) and Ca(2+)-dependent cell signaling in muscle. Activities of 4 chiral congeners PCB91, 95, 132, and 149 and their respective 4- and 5-hydroxy (-OH) derivatives toward rabbit skeletal muscle ryanodine receptor (RyR1) are investigated using [(3)H]ryanodine binding and SR Ca(2+) flux analyses. Although 5-OH metabolites have comparable activity to their respective parent in both assays, 4-OH derivatives are unable to trigger Ca(2+) release from SR microsomes in the presence of Ca(2+)-ATPase activity. PCB95 and derivatives are investigated using single channel voltage-clamp and primary murine embryonic muscle cells (myotubes). Like PCB95, 5-OH-PCB95 quickly and persistently increases channel open probability (p o > .9) by stabilizing the full-open channel state, whereas 4-OH-PCB95 transiently enhances p o. Ca(2+) imaging of myotubes loaded with Fluo-4 show that acute exposure to PCB95 (5 µM) potentiates ECC and caffeine responses and partially depletes SR Ca(2+) stores. Exposure to 5-OH-PCB95 (5 µM) increases cytoplasmic Ca(2+), leading to rapid ECC failure in 50% of myotubes with the remainder retaining negligible responses. 4-OH-PCB95 neither increases baseline Ca(2+) nor causes ECC failure but depresses ECC and caffeine responses by 50%. With longer (3h) exposure to 300 nM PCB95, 5-OH-PCB95, or 4-OH-PCB95 decreases the number of ECC responsive myotubes by 22%, 81%, and 51% compared with control by depleting SR Ca(2+) and/or uncoupling ECC. NDL-PCBs and their 5-OH and 4-OH metabolites differentially influence RyR1 channel activity and ECC in embryonic skeletal muscle.


Subject(s)
Muscle, Skeletal/drug effects , Polychlorinated Biphenyls/toxicity , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle, Skeletal/enzymology , Muscle, Skeletal/physiopathology , Polychlorinated Biphenyls/chemistry , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Structure-Activity Relationship
2.
Tetrahedron ; 67(39): 7461-7469, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21918585

ABSTRACT

The iodination of chlorinated aromatic compounds using Ag(2)SO(4)/I(2), AgSbF(6)/I(2), AgBF(4)/I(2) and AgPF(6)/I(2) offers access to iodoarenes that are valuable intermediates in organic synthesis. Specifically, iodination of phenols, anisoles and anilines with a 3,5-dichloro substitution pattern preferentially yielded the ortho, para and para iodinated product, respectively. In the case of chlorobenzene and 3-chlorotoluene, AgSbF(6)/I(2), AgBF(4)/I(2) and AgPF(6)/I(2), but not Ag(2)SO(4)/I(2), selectively introduced the iodine in para position to the chlorine substituent.

3.
Colloids Surf B Biointerfaces ; 78(1): 75-84, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20227859

ABSTRACT

The partitioning behavior of a series of perhydrocarbon nicotinic acid esters (nicotinates) between aqueous solution and dipalmitoylphosphatidylcholine (DPPC) membrane bilayers is investigated as a function of increasing alkyl chain length. The hydrocarbon nicotinates represent putative prodrugs, derivatives of the polar drug nicotinic acid, whose functionalization provides the hydrophobic character necessary for pulmonary delivery in a hydrophobic, fluorocarbon solvent, such as perfluorooctyl bromide. Independent techniques of differential scanning calorimetry and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy measurements are used to analyze the thermotropic phase behavior and lipid bilayer fluidity as a function of nicotinate concentration. At increasing concentrations of nicotinates over the DPPC mole fraction range examined (X(DPPC)=0.6-1.0), all the nicotinates (ethyl (C2H5); butyl (C4H9); hexyl (C6H13); and octyl (C8H17)) partition into the lipid bilayer at sufficient levels to eliminate the pretransition, and decrease and broaden the gel to fluid phase transition temperature. The concentration at which these effects occur is chain length-dependent; the shortest chain nicotinate, C2H5, elicits the least dramatic response. Similarly, the DPH anisotropy results demonstrate an alteration of the bilayer organization in the liposomes as a consequence of the chain length-dependent partitioning of the nicotinates into DPPC bilayers. The membrane partition coefficients (logarithm values), determined from the depressed bilayer phase transition temperatures, increase from 2.18 for C2H5 to 5.25 for C8H17. The DPPC membrane/water partitioning of the perhydrocarbon nicotinate series correlates with trends in the octanol/water partitioning of these solutes, suggesting that their incorporation into the bilayer is driven by increasing hydrophobicity.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Esters/analysis , Lipid Bilayers/chemistry , Membranes, Artificial , Niacin/analysis , Prodrugs/analysis , Calorimetry, Differential Scanning , Diphenylhexatriene/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemistry , Niacin/chemistry , Phase Transition , Transition Temperature
4.
J Chromatogr A ; 1207(1-2): 146-54, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18760792

ABSTRACT

Several polychlorinated biphenyls (PCBs) and their hydroxylated metabolites display axial chirality. Here we describe an enantioselective, gas chromatographic separation of methylated derivatives of hydroxylated (OH-)PCB atropisomers (MeO-PCB) using a chemically bonded beta-cyclodextrin column (Chirasil-Dex). The atropisomers of several MeO-PCBs could be separated on this column with resolutions ranging from 0.42 to 0.87 under isothermal or temperature-programmed conditions. In addition, the enantiomeric fraction of OH-PCB 136 metabolites was determined in male and female rats treated with racemic PCB 136. The methylated derivatives of two OH-PCB 136 metabolites showed an enantiomeric enrichment in liver tissue, whereas PCB 136 itself was near racemic.


Subject(s)
Chromatography, Gas/methods , Liver/chemistry , Polychlorinated Biphenyls/analysis , Animals , Polychlorinated Biphenyls/chemistry , Polychlorinated Biphenyls/isolation & purification , Rats , Stereoisomerism
5.
Int J Pharm ; 353(1-2): 35-44, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18164563

ABSTRACT

This study explores perfluorooctyl bromide (PFOB) as a potential vehicle for the pulmonary delivery of a series of prodrugs of nicotinic acid using cell culture studies. The prodrugs investigated have PFOB-water (logK(p)=0.78 to >2.2), perfluoromethylcyclohexane-toluene (logK(p)=-2.62 to 0.13) and octanol-water (logK(p)=0.90-10.2) partition coefficients spanning several orders of magnitude. In confluent NCI-H358 human lung cancer cells, the toxicity of prodrugs administered in culture medium or PFOB depends on the medium of administration, with EC20's above 8 mM and 2.5 mM for culture medium and PFOB, respectively. Short-chain nicotinates administered both in PFOB and medium increase cellular NAD/NADP levels at 1mM nicotinate concentrations. Long-chain nicotinates, which could not be administered in medium due to their poor aqueous solubility, increased NAD/NADP levels if administered in PFOB at concentrations > or =10 mM. These findings suggest that even highly lipophilic prodrugs can partition out of the PFOB phase into cells, where nicotinic acid is released and converted to NAD. Thus, PFOB may be a novel and biocompatible vehicle for the delivery of lipophilic prodrugs of nicotinic acid and other drugs directly to the lung of laboratory animals and humans.


Subject(s)
Fluorocarbons/administration & dosage , Lung/metabolism , Nicotinic Acids/administration & dosage , Prodrugs/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrocarbons, Brominated , NAD/analysis , NADP/analysis , Nicotinic Acids/chemical synthesis , Nicotinic Acids/chemistry , Nicotinic Acids/pharmacology , Pharmaceutical Vehicles , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Solubility
6.
Article in English | MEDLINE | ID: mdl-17365291

ABSTRACT

Perfluorooctanesulfonyl (PFOS)-based materials and related compounds are an emerging group of environmental pollutants. Perfluorooctanesulfonyl fluoride, the key intermediate for the production of these materials, was manufactured by an electrochemical fluorination process that resulted in complex mixtures containing linear and branched PFOS derivatives and other perfluorinated compounds. This study uses 19F-NMR spectroscopy to investigate differences in the composition between commercial samples of PFOS and PFBS (perfluorobutanesulfonyl) derivatives. While PFBS derivatives, which are under evaluation as substitutes for PFOS-based materials, contained no detectable levels of branched impurities, all PFOS derivatives contained significant levels of branched and other impurities. Analysis of the NMR data reveals that PFOS fluorides typically have a higher content of internally branched and similar levels of isopropyl branched PFOS isomers compared to PFOS potassium salts. Furthermore, the isomer distribution of PFOS derivatives may vary depending on their source. These findings suggest that it is important to determine the isomer composition of PFOS samples used in both environmental and toxicological studies.


Subject(s)
Alkanesulfonic Acids/chemistry , Environmental Pollutants/chemistry , Fluorocarbons/chemistry , Isomerism , Magnetic Resonance Spectroscopy
7.
J Phys Chem B ; 111(2): 363-70, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17214487

ABSTRACT

The tailoring of porous silica thin films synthesized using perfluoroalkylpyridinium chloride surfactants as templating agents is achieved as a function of carbon dioxide processing conditions and surfactant tail length and branching. Well-ordered films with 2D hexagonal close-packed pore structure are obtained from sol-gel synthesis using the following cationic fluorinated surfactants as templates: 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl)pyridinium chloride (HFOPC), 1-(3,3,4,4,5,5,6,6,7,8,8,8-dodecafluoro-7-trifluoromethyl -octyl)pyridinium chloride (HFDoMePC), and 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decyl)pyridinium chloride (HFDePC). Processing the sol-gel film with CO2 (69-172 bar, 25 and 45 degrees C) immediately after coating results in significant increases in pore diameter relative to the unprocessed thin films (increasing from 20% to 80% depending on surfactant template and processing conditions). Pore expansion increases with CO2 processing pressure, surfactant tail length, and surfactant branching. The varying degree of CO2 induced expansion is attributed to the solvation of the "CO2-philic" fluorinated tail and is interpreted from interfacial behavior of HFOPC, HFDoMePC, and HFDePC at the CO2-water interface.


Subject(s)
Carbon Dioxide/chemistry , Hydrocarbons, Fluorinated/chemistry , Membranes, Artificial , Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , Cations/chemistry , Micelles , Molecular Structure , Particle Size , Porosity , Pressure , Silicon Dioxide/chemical synthesis , Surface Properties
8.
J Phys Chem B ; 109(49): 23225-32, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16375286

ABSTRACT

A series of porous silica particles is prepared with different concentrations of the fluorinated cationic surfactant 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10)-heptadecafluorodecyl)pyridinium chloride (HFDePC) to trace the changes in pore structure and particle morphology as the surfactant concentration increases. At the lowest concentration studied (1.5 mmol/L), the product consists of small round particles with close-packed cylindrical mesopores. As the HFDePC concentration increases, macroporous voids are introduced to create multi-chambered hollow particles with mesoporous walls. With a still higher concentration of HFDePC the macropore volume decreases, and elongated, tactoid-like nanoparticles are formed with random mesh-phase pores oriented with silica layers perpendicular to the main axis of the particles. Further increasing the concentration of HFDePC eventually leads to the formation of round particles with disordered pores. These changes are consistent with increasing HFDePC concentration favoring increasingly oblate or disklike micelles. The process of forming the elongated particles with random mesh-phase structure is investigated by TEM of chilled and dried samples. The results indicate that the oriented tactoid-like structure forms spontaneously within 2 min by co-assembly of silica and HFDePC rather than by preferred growth perpendicular to the layers. The particle shape and layer orientation are consistent with what would be expected for a liquid-crystal particle with orientation-dependent surface tension. Finally, we compare samples prepared with a high HFDePC and with good or poor mixing. With inadequate mixing, a gel layer forms at the top of the sample which is composed of elongated mesoporous particles with a thick coating of microporous silica. The lower particulate phase contains small disordered particles similar to those obtained in a well-mixed sample. Presumably, the structure of the upper layer results from initial immiscibility of the precursor and slow diffusion of silicates out of the gel.

9.
Nanotechnology ; 16(7): S502-7, 2005 Jul.
Article in English | MEDLINE | ID: mdl-21727471

ABSTRACT

A cationic partially fluorinated surfactant with four carbons in the chain 1-(3,3,4,4,4-pentafluorobutyl)pyridinium chloride is employed as a structure-directing agent to synthesize nanoporous silica. Samples are prepared in dilute ammonia solutions at room temperature with a range of surfactant:Si ratios. The sample with the largest surfactant:Si ratio forms particles with wormhole-like micropores with an average diameter of 1.6 nm, which corresponds to the anticipated small size of the surfactant aggregates. On the other hand, the sample with the smallest surfactant:Si ratio forms a gel that, upon drying, has uniform 11.1 nm pores. The formation and stabilization of the latter large-mesopore structure is unusual for a sample prepared and dried under ambient conditions, and may reflect favourable roles of the surfactant both in inducing gelation and in stabilizing the pore structure during drying.

SELECTION OF CITATIONS
SEARCH DETAIL
...