Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Vis Exp ; (197)2023 07 14.
Article in English | MEDLINE | ID: mdl-37522727

ABSTRACT

The use of viral vectors to treat genetic diseases has increased substantially in recent years, with over 2,000 studies registered to date. Adeno-associated viral (AAV) vectors have found particular success in the treatment of eye related diseases, as exemplified by the approval of voretigene neparvovec-rzyl. To bring new therapies to market, regulatory agencies typically request qualified or validated bioshedding studies to evaluate release of the vector into the environment. However, no official guidelines for the development of molecular based assays to support such shedding studies have been released by the United States Food and Drug Administration, leaving developers to determine best practices for themselves. The purpose of this protocol is to present a validatable protocol for the detection of AAV vectors in human tears by droplet digital polymerase chain reaction (ddPCR) in support of clinical bioshedding studies. This manuscript discusses current industry approaches to molecular assay validation and demonstrates that the method exceeds the target assay acceptance criteria currently proposed in white papers. Finally, steps critical in the performance of any ddPCR assay, regardless of application, are discussed.


Subject(s)
Dependovirus , Eye Diseases , Humans , Dependovirus/genetics , Polymerase Chain Reaction/methods , Genetic Therapy/methods , Genetic Vectors/genetics , Real-Time Polymerase Chain Reaction/methods
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175432

ABSTRACT

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Subject(s)
Asthma , MicroRNAs , Child , Humans , Male , Female , Child, Preschool , Pregnancy , Smoke , Placenta/metabolism , Asthma/genetics , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
3.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36986472

ABSTRACT

BACKGROUND: Crohn's disease with upper gastrointestinal tract involvement occurs more often in children than adults and has the potential to interfere with oral drug absorption. We aimed to compare disease outcomes in children receiving oral azathioprine for the treatment of Crohn's disease with (DP) and without (NDP) duodenal pathology at diagnosis. METHODS: Duodenal villous length, body mass index (BMI), and laboratory studies were compared in DP vs. NDP during the first year post-diagnosis, using parametric/nonparametric tests and regression analysis (SAS v9.4); the data are reported as the median (interquartile range) or the mean ± standard deviation. Thiopurine metabolite concentration (pmol/8 × 108 erythrocytes) 230-400 was considered therapeutic for 6-thioguanine nucleotides (6-TGN), and >5700 was considered hepatotoxic for 6-methylmercaptopurine (6-MMPN). RESULTS: Twenty-six of the fifty-eight children enrolled (29 DP, 29 NDP) started azathioprine for standard medical care, including nine DP and ten NDP who had normal thiopurine methyltransferase activity. Duodenal villous length was significantly shorter in DP vs. NDP (342 ± 153 vs. 460 ± 85 µm; p < 0.001) at diagnosis; age, sex, hemoglobin, and BMI were comparable between groups. A trend toward lower 6-TGN was observed in the DP vs. NDP subset receiving azathioprine (164 (117, 271) vs. 272 (187, 331); p = 0.15). Compared to NDP, DP received significantly higher azathioprine doses (2.5 (2.3, 2.6) vs. 2.2 (2.0, 2.2) mg/kg/day; p = 0.01) and had an increased relative risk of sub-therapeutic 6-TGN. At 9 months post-diagnosis, children with DP had significantly lower hemoglobin (12.5 (11.7, 12.6) vs. 13.1 (12.7, 13.3) g/dL; p = 0.01) and BMI z-scores (-0.29 (-0.93, -0.11) vs. 0.88 (0.53, 0.99); p = 0.02) than children with NDP. CONCLUSION: For children with Crohn's disease, duodenal pathology, marked by villous blunting, increased the risk of sub-therapeutic 6-TGN levels, despite higher azathioprine dosing during the first year post-diagnosis. Lower hemoglobin and BMI z-scores at 9 months post-diagnosis suggest the impaired absorption/bioavailability of nutrients, as well as oral drugs, in children with duodenal disease.

4.
Front Genet ; 13: 762834, 2022.
Article in English | MEDLINE | ID: mdl-35480332

ABSTRACT

Background: Sex-specific differences in fetal lung maturation have been well described; however, little is known about the sex-specific differences in microRNA (miRNA) expression during human fetal lung development. Interestingly, many adult chronic lung diseases also demonstrate sex-specific differences in prevalence. The developmental origins of health and disease hypothesis suggests that these sex-specific differences in fetal lung development may influence disease susceptibility later in life. In this study, we performed miRNA sequencing on human fetal lung tissue samples to investigate differential expression of miRNAs between males and females in the pseudoglandular stage of lung development. We hypothesized that differences in miRNA expression are present between sexes in early human lung development and may contribute to the sex-specific differences seen in pulmonary diseases later in life. Methods: RNA was isolated from human fetal lung tissue samples for miRNA sequencing. The count of each miRNA was modeled by sex using negative binomial regression models in DESeq2, adjusting for post-conception age, age2, smoke exposure, batch, and RUV factors. We tested for differential expression of miRNAs by sex, and for the presence of sex-by-age interactions to determine if miRNA expression levels by age were distinct between males and females. Results: miRNA expression profiles were generated on 298 samples (166 males and 132 females). Of the 809 miRNAs expressed in human fetal lung tissue during the pseudoglandular stage of lung development, we identified 93 autosomal miRNAs that were significantly differentially expressed by sex and 129 miRNAs with a sex-specific pattern of miRNA expression across the course of the pseudoglandular period. Conclusion: Our study demonstrates differential expression of numerous autosomal miRNAs between the male and female developing human lung. Additionally, the expression of some miRNAs are modified by age across the pseudoglandular stage in a sex-specific way. Some of these differences in miRNA expression may impact susceptibility to pulmonary disease later in life. Our results suggest that sex-specific miRNA expression during human lung development may be a potential mechanism to explain sex-specific differences in lung development and may impact subsequent disease susceptibility.

5.
Environ Health Perspect ; 129(11): 117001, 2021 11.
Article in English | MEDLINE | ID: mdl-34747641

ABSTRACT

BACKGROUND: Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES: The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS: Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS: TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION: We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.


Subject(s)
Dioxins , Placentation , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dioxins/toxicity , Endothelial Cells/metabolism , Female , Placenta/metabolism , Polychlorinated Dibenzodioxins/toxicity , Pregnancy , Rats , Receptors, Aryl Hydrocarbon/metabolism , Trophoblasts/drug effects
6.
Aging (Albany NY) ; 13(2): 1742-1764, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33468710

ABSTRACT

Fetal perturbations in DNA methylation during lung development may reveal insights into the enduring impacts on adult lung health and disease during aging that have not been explored altogether before. We studied the association between genome-wide DNA-methylation and post-conception age in fetal-lung (n=78, 42 exposed to in-utero-smoke (IUS)) tissue and chronological age in adult-lung tissue (n=160, 114 with Chronic Obstructive Pulmonary Disease) using multi-variate linear regression models with covariate adjustment and tested for effect modification by phenotypes. Overlapping age-associations were evaluated for functional and tissue-specific enrichment using the Genotype-Tissue-Expression (GTEx) project. We identified 244 age-associated differentially methylated positions and 878 regions overlapping between fetal and adult-lung tissues. Hyper-methylated CpGs (96%) were enriched in transcription factor activity (FDR adjusted P=2x10-33) and implicated in developmental processes including embryonic organ morphogenesis, neurogenesis and growth delay. Hypo-methylated CpGs (2%) were enriched in oxido-reductase activity and VEGFA-VEGFR2 Signaling. Twenty-one age-by-sex and eleven age-by-pack-years interactions were statistically significant (FDR<0.05) in adult-lung tissue. DNA methylation in transcription factors during development in fetal lung recapitulates in adult-lung tissue with aging. These findings reveal molecular mechanisms and pathways that may link disrupted development in early-life and age-associated lung diseases.


Subject(s)
Aging/metabolism , DNA Methylation , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Aging/genetics , Aging/pathology , CpG Islands , Epigenesis, Genetic , Female , Humans , Lung/pathology , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology
7.
Clin Transl Sci ; 14(2): 729-736, 2021 03.
Article in English | MEDLINE | ID: mdl-33278326

ABSTRACT

Changes in absorptive capacity and first-pass metabolism in the small intestine affect oral drug bioavailability. Characterization of such changes as a consequence of inflammation is important for developing physiologically-based pharmacokinetic (PBPK) models for inflammatory bowel disease. We sought to elucidate the impact of small intestinal Crohn's disease (CD) on villous length and CYP3A4 expression in children. Freshly frozen duodenal and terminal ileum (TI) biopsies from 107 children (1-19 years) with and without CD were evaluated for active inflammation. Villous length and CYP3A4 mRNA/protein expression were compared among regions of active and inactive inflammation in CD and controls. A twofold reduction in villous length was observed in inflamed duodena and ilia of children with CD, but in the absence of regional inflammation, villi in CD were comparable in length to controls. Expression of CYP3A4 mRNA correlated significantly with villous length in the TI (P = 0.0003), with a trend observed in the duodenum that did not reach statistical significance. In the presence of active inflammation, a significant decrease in CYP3A protein expression was confirmed in the duodenum, where protein expression also correlated significantly with villous length across diagnoses (P < 0.0001). Our findings suggest that previous observations of decreased CYP3A4 expression and function in inflamed intestine may not be due solely to downregulation by inflammatory cytokines, but also to villous blunting and subsequent loss of surface area for protein expression. This information is relevant for PBPK model development and could aid with dose adjustment decisions for oral CYP3A4 substrates administered during CD flare (e.g., budesonide).


Subject(s)
Anti-Inflammatory Agents/pharmacokinetics , Crohn Disease/drug therapy , Cytochrome P-450 CYP3A/metabolism , Intestinal Mucosa/metabolism , Administration, Oral , Adolescent , Anti-Inflammatory Agents/administration & dosage , Biological Availability , Biopsy , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Case-Control Studies , Child , Child, Preschool , Crohn Disease/immunology , Crohn Disease/pathology , Dose-Response Relationship, Drug , Duodenum/cytology , Duodenum/immunology , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Ileum/cytology , Ileum/immunology , Ileum/metabolism , Ileum/pathology , Infant , Intestinal Absorption/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Male , Models, Biological , Young Adult
8.
Eur Respir J ; 56(4)2020 10.
Article in English | MEDLINE | ID: mdl-32482784

ABSTRACT

COPD likely has developmental origins; however, the underlying molecular mechanisms are not fully identified. Investigation of lung tissue-specific epigenetic modifications such as DNA methylation using network approaches might facilitate insights linking in utero smoke (IUS) exposure and risk for COPD in adulthood.We performed genome-wide methylation profiling for adult lung DNA from 160 surgical samples and 78 fetal lung DNA samples isolated from discarded tissue at 8-18 weeks of gestation. Co-methylation networks were constructed to identify preserved modules that shared methylation patterns in fetal and adult lung tissues and associations with fetal IUS exposure, gestational age and COPD.Weighted correlation networks highlighted preserved and co-methylated modules for both fetal and adult lung data associated with fetal IUS exposure, COPD and lower adult lung function. These modules were significantly enriched for genes involved in embryonic organ development and specific inflammation-related pathways, including Hippo, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), Wnt, mitogen-activated protein kinase and transforming growth factor-ß signalling. Gestational age-associated modules were remarkably preserved for COPD and lung function, and were also annotated to genes enriched for the Wnt and PI3K/AKT pathways.Epigenetic network perturbations in fetal lung tissue exposed to IUS and of early lung development recapitulated in adult lung tissue from ex-smokers with COPD. Overlapping fetal and adult lung tissue network modules highlighted putative disease pathways supportive of exposure-related and age-associated developmental origins of COPD.


Subject(s)
Phosphatidylinositol 3-Kinases , Pulmonary Disease, Chronic Obstructive , Adult , DNA Methylation , Epigenesis, Genetic , Humans , Lung , Phosphatidylinositol 3-Kinases/genetics , Pulmonary Disease, Chronic Obstructive/genetics
9.
Drug Metab Dispos ; 48(6): 515-520, 2020 06.
Article in English | MEDLINE | ID: mdl-32303576

ABSTRACT

The cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates. Several SULTs are expressed in the fetus, implying that these enzymes have important functions during human development. We recently reported that while SULT1C4 mRNA is abundant in prenatal human liver specimens, SULT1C4 protein is barely detectable. Two coding transcript variants (TVs) of SULT1C4 are indexed in GenBank, TV1 (full-length) and TV2 (lacking exons 3 and 4). The purpose of this study was to evaluate expression of the individual TVs as a clue for understanding the discordance between mRNA and protein levels. Reverse-transcription polymerase chain reaction was initially performed to identify TVs expressed in intestinal and hepatic cell lines. This analysis generated fragments corresponding to TV1, TV2, and a third variant that lacked exon 3 (E3DEL). Using reverse-transcription quantitative polymerase chain reaction assays designed to quantify TV1, TV2, or E3DEL individually, all three TVs were more highly expressed in prenatal than postnatal specimens. TV2 levels were ∼fivefold greater than TV1, while E3DEL levels were minimal. RNA sequencing (RNA-seq) analysis of another set of liver specimens confirmed that TV1 and TV2 levels were highest in prenatal liver, with TV2 higher than TV1. RNA-seq also detected a noncoding RNA, which was also more abundant in prenatal liver. Transfection of HEK293T cells with plasmids expressing individual Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-tagged SULT1C4 isoforms demonstrated that TV1 produced much more protein than did TV2. These data suggest that the lack of correspondence between SULT1C4 mRNA and protein levels in human liver is likely attributable to the inability of the more abundant TV2 to produce stable protein. SIGNIFICANCE STATEMENT: Cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates, and several SULTs are highly expressed in the fetus, implying that they have important functions during human development. SULT1C4 is highly expressed in prenatal liver at the mRNA level but not the protein level. This study provides an explanation for this discordance by demonstrating that the predominant SULT1C4 transcript is a variant that produces relatively little protein.


Subject(s)
Gene Expression Regulation, Developmental , Liver/enzymology , RNA, Messenger/metabolism , Sulfotransferases/genetics , Exons/genetics , HEK293 Cells , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Seq , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfotransferases/metabolism
10.
Drug Metab Dispos ; 47(6): 592-600, 2019 06.
Article in English | MEDLINE | ID: mdl-30885913

ABSTRACT

The liver is the predominant organ of metabolism for many endogenous and foreign chemicals. Cytosolic sulfotransferases (SULTs) catalyze the sulfonation of drugs and other xenobiotics, as well as hormones, neurotransmitters, and sterols, with consequences that include enhanced drug elimination, hormone inactivation, and procarcinogen bioactivation. SULTs are classified into six gene families, but only SULT1 and SULT2 enzymes are expressed in human liver. We characterized the developmental expression patterns of SULT1 and SULT2 mRNAs and proteins in human liver samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), RNA sequencing, and targeted quantitative proteomics. Using a set of prenatal, infant, and adult liver specimens, RT-qPCR analysis demonstrated that SULT1A1 (transcript variant 1) expression did not vary appreciably during development; SULT1C2, 1C4, and 1E1 mRNA levels were highest in prenatal and/or infant liver, and 1A2, 1B1, and 2A1 mRNA levels were highest in infant and/or adult. Hepatic SULT1A1 (transcript variant 5), 1C3, and 2B1 mRNA levels were low regardless of developmental stage. Results obtained with RNA sequencing of a different set of liver specimens (prenatal and pediatric) were generally comparable results to those of the RT-qPCR analysis, with the additional finding that SULT1A3 expression was highest during gestation. Analysis of SULT protein content in a library of human liver cytosols demonstrated that protein levels generally corresponded to the mRNAs, with the major exception that SULT1C4 protein levels were much lower than expected based on mRNA levels. These findings further support the concept that hepatic SULTs play important metabolic roles throughout the human life course, including early development.


Subject(s)
Cytosol/metabolism , Liver/metabolism , Sulfotransferases/metabolism , Adolescent , Adult , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , RNA, Messenger/metabolism , Young Adult
11.
Br J Clin Pharmacol ; 85(5): 960-969, 2019 05.
Article in English | MEDLINE | ID: mdl-30706508

ABSTRACT

AIMS: CYP2A6 is a genetically polymorphic enzyme resulting in differential substrate metabolism and health behaviours. Current phenotyping probes for CYP2A6 exhibit limitations related to procurement (deuterated cotinine), toxicity (coumarin), specificity (caffeine) and age-appropriate administration (nicotine, NIC). In vitro, CYP2A6 selectively forms 2-hydroxymetronidazole (2HM) from metronidazole (MTZ). The purpose of this study was to evaluate MTZ as a CYP2A6 phenotyping probe drug in healthy adults against the well-established method of measuring trans-3-hydroxycotinine (3HC)/cotinine (COT). METHODS: A randomized, cross-over, pharmacokinetic study was completed in 16 healthy, nonsmoking adults. Separated by a washout period of at least 2 weeks, MTZ 500 mg and NIC gum 2 mg were administered and plasma was sampled over 48 hours and 8 hours, respectively. Correlations of plasma metabolite/parent ratios (2HM/MTZ; 3HC/COT) were assessed by Pearson coefficient. CYP2A6 genotyping was conducted and incorporated as a variable of plasma ratio response. RESULTS: Correlations between the plasma ratio 2HM/MTZ and 3HC/COT were ≥ 0.9 at multiple time points (P < 0.001), demonstrating a wide window during which 2HM/MTZ can be queried post-MTZ dose. CYP2A6 genotype had significant impacts on both MTZ and NIC phenotyping ratios with decreased activity predicted phenotypes demonstrating 2HM/MTZ ratios ≤58% and 3HC/COT ratios ≤56% compared with extensive activity predicted phenotypes at all time points examined in the study (P < 0.05). No adverse events were reported in the MTZ arm while 38% (n = 6) of participants reported mild adverse events in the NIC arm. CONCLUSIONS: Metronidazole via 2HM/MTZ performed well as a novel, safe phenotyping probe for CYP2A6 in healthy adults.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Metronidazole/pharmacokinetics , Nicotine/pharmacokinetics , Pharmacogenomic Testing/methods , Adolescent , Adult , Cross-Over Studies , Cytochrome P-450 CYP2A6/metabolism , Female , Healthy Volunteers , Humans , Male , Metronidazole/administration & dosage , Middle Aged , Nicotine/administration & dosage , Nicotine Chewing Gum , Polymorphism, Genetic , Sequence Analysis, DNA , Young Adult
12.
Eur J Obstet Gynecol Reprod Biol ; 218: 27-32, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28926727

ABSTRACT

BACKGROUND: Reduced telomere length, or its accelerated attrition, has been implicated in aging, mortality, and several human diseases, including respiratory diseases. Age dependent manifestation of telomere-mediated disease during life span indicates the role of developmental stage in these diseases and highlights the importance of fetal developmental process in utero and at earlier life stages. Environmental determinants during developmental and later stages of life could affect telomere length. Smoke exposure as one of these significant determinants have been investigated in association with telomere length in neonates at time of delivery, children and adults. OBJECTIVE: We sought to investigate whether intrauterine fetal exposure to tobacco smoking characterized by placenta cotinine levels during early weeks of pregnancy might be associated with shorter relative telomere length (T/S ratio) as compared to fetuses without exposure to tobacco smoking. STUDY DESIGN: 207 Human placenta and epithelial lung samples were used for both fetal lung telomere length assessment and measurement of placental cotinine levels. Tissues were obtained from two NICHD-supported tissue retrieval programs with registries for elective abortions, the University of Washington Center for Birth Defects Research (Seattle, WA) and the University of Maryland Brain and Tissue Bank for Developmental Disorders (Baltimore, MD). Cotinine levels (ng/g total placental tissue) were determined in whole cell extracts prepared from human placenta samples to characterize and confirm the cotinine exposure status associated with maternal smoking. Relative telomere length (T/S ratio) in genomic DNA extracted from fetal lung tissue was measured by use of quantitative real-time polymerase chain reaction. Multivariable linear regression was used to investigate the relationship between fetal Telomere-to-Single Copy (T/S) ratio and tobacco exposure. RESULTS: The estimated post-conception ages for included samples in the study ranged from 54 to 137days (7-19 weeks of gestation); 47.37% of fetal samples had female sex. Of the samples included in the analysis 96 and 111 fetal samples with and without intrauterine tobacco smoking exposure were distinguished. While T/S ratio was not different between those with and without smoking exposure (1.24±0.41 and 1.27±0.48, respectively; P=0.70), a significant effect modification of post-conception age on the relationship of intrauterine smoke exposure on fetal T/S ratio was observed (adjusted coefficient=-0.008, 95% CI: -0.016, -0.0004). The smoke exposure status was associated with T/S ratio after 93-day post conception (adjusted coefficient=-0.29, 95% CI: -0.53, -0.052). CONCLUSIONS: Our results demonstrate a significant association of smoke exposure in utero at early pregnancy with shortened fetal relative telomere length in the developing lung and suggest that the detrimental effect of smoking exposure on future disease sequelae may start at the early stages of pregnancy.


Subject(s)
Lung/embryology , Maternal Exposure/adverse effects , Smoking/adverse effects , Telomere Shortening , Case-Control Studies , Cotinine/analysis , Female , Gestational Age , Humans , Linear Models , Male , Placenta/metabolism , Pregnancy , Real-Time Polymerase Chain Reaction , Smoking/genetics , Smoking/metabolism
13.
J Racial Ethn Health Disparities ; 4(4): 735-745, 2017 08.
Article in English | MEDLINE | ID: mdl-27664025

ABSTRACT

BACKGROUND: African Americans are under-represented in research, and there are perceptions of unwillingness among African Americans to participate in research. We explored barriers to African American research participation. METHODS: We conducted a cross-sectional survey to explore knowledge and beliefs regarding medical and genetic research among adults (n = 169) at urban community events. Descriptive data were summarized by frequencies for survey responses. RESULTS: Only 13 % of respondents had ever been approached for research; 93 % of those who had been approached for research had participated. Eighty-six percent of those who had previous research experience indicated willingness to participate again vs. only 30 % among those with no research experience. Seventy-four percent had altruistic views of research; 28 % were concerned about truthfulness of researchers; 52 % feared incidental discoveries. CONCLUSION: African Americans have favorable views of research; however, few are being engaged in studies. Effective interventions to address identified barriers may improve participation and lead to better health outcomes among African Americans.


Subject(s)
Biomedical Research , Black or African American/psychology , Genetic Research , Health Knowledge, Attitudes, Practice/ethnology , Adolescent , Adult , Black or African American/statistics & numerical data , Aged , Cross-Sectional Studies , Female , Health Status Disparities , Humans , Male , Middle Aged , Midwestern United States , Research Subjects/statistics & numerical data , Surveys and Questionnaires , Urban Population/statistics & numerical data , Young Adult
14.
Drug Metab Dispos ; 44(7): 1020-6, 2016 07.
Article in English | MEDLINE | ID: mdl-26772622

ABSTRACT

Members of the human CYP3A family of metabolizing enzymes exhibit developmental changes in expression whereby CYP3A7 is expressed in fetal tissues, followed by a transition to expression of CYP3A4 in the first months of life. Despite knowledge about the general pattern of CYP3A activity in human development, the mechanisms that regulate developmental expression remain poorly understood. Epigenetic changes, including cytosine methylation, have been suggested to play a role in the regulation of CYP3A expression. The objective of this study was to investigate changes in cytosine methylation of the CYP3A4 and CYP3A7 genes in human pediatric and prenatal livers. The methylation status of cytosine-phospho-guanine dinucleotides was determined in 16 pediatric liver samples using methyl-seq and confirmed by bisulfite sequencing of 48 pediatric and 34 prenatal liver samples. Samples were separated by age into five groups (prenatal, < 1 year of age, 1.8-6 years, 7-11 years, and 12-17 years). Methyl-seq anaylsis revealed that cytosines in the proximal promoter of CYP3A7 are hypomethylated in neonates compared with adolescents (P < 0.001). In contrast, a cytosine 383 base pair upstream of CYP3A4 is hypermethylated in liver samples from neonates compared with adolescents (P = 0.00001). Developmental changes in methylation of cytosines in the proximal promoters of CYP3A4 and CYP3A7 in pediatric livers were confirmed by bisulfite sequencing. In addition, the methylation status of cytosine in the CYP3A4 and CYP3A7 proximal promoters correlated with changes in developmental expression of mRNA for the two enzymes.


Subject(s)
Aging/genetics , Cytochrome P-450 CYP3A/genetics , Cytosine , DNA Methylation , Epigenesis, Genetic , Liver/enzymology , Promoter Regions, Genetic , Adolescent , Age Factors , Aging/metabolism , Child , Child, Preschool , Cytochrome P-450 CYP3A/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gestational Age , Humans , Infant , Infant, Newborn , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Front Pharmacol ; 7: 524, 2016.
Article in English | MEDLINE | ID: mdl-28101058

ABSTRACT

Introduction: There is growing knowledge of the wide ranging effects of histamine throughout the body therefore it is important to better understand the effects of this amine in patients with asthma. We aimed to explore the association between histamine pharmacodynamic (PD) response and genetic variation in the histamine pathway in children with asthma. Methods: Histamine Iontophoresis with Laser Doppler Monitoring (HILD) was performed in children with asthma and estimates for area under the effect curve (AUEC), maximal response over baseline (Emax), and time of Emax (Tmax) were calculated using non-compartmental analysis and non-linear mixed-effects model with a linked effect PK/PD model. DNA isolation and genotyping were performed among participants to detect known single nucleotide polymorphisms (SNPs) (n = 10) among genes (HDC, HNMT, ABP1, HRH1, HRH4) within the histamine pathway. General linear model was used to identify associations between histamine related genetic variants and measured histamine PD response parameters. Results: Genotyping and HILD response profiles were completed for 163 children. ABP1 47 C/T, ABP1 4107, and HNMT-1639 C/Twere associated with Emax (ABP1 47 CC genotype mean Emax 167.21 vs. CT/TT genotype mean Emax 139.20, p = 0.04; ABP1 4107 CC genotype mean Emax 141.72 vs. CG/GG genotype mean Emax 156.09, p = 0.005; HNMT-1639 CC genotype mean Emax 132.62 vs. CT/TT genotype mean Emax 155.3, p = 0.02). In a stratified analysis among African American children only, ABP1 and HNMT SNPs were also associated with PD response; HRH4 413 CC genotype was associated with lower Emax, p = 0.009. Conclusions: We show for the first time that histamine pathway genetic variation is associated with measureable changes in histamine response in children with asthma. The variability in histamine response and impact of histamine pathway genotype is important to further explore in patients with asthma so as to improve disease phenotyping leading to more personalized treatments.

16.
Am J Respir Cell Mol Biol ; 54(6): 814-21, 2016 06.
Article in English | MEDLINE | ID: mdl-26584061

ABSTRACT

The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development.


Subject(s)
Fetus/metabolism , Lung Diseases/genetics , Lung/embryology , Lung/pathology , Sex Characteristics , Transcriptome/genetics , Age Factors , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Male , Principal Component Analysis , Statistics as Topic
17.
Drug Metab Dispos ; 43(8): 1286-93, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979262

ABSTRACT

Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.


Subject(s)
Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A/genetics , Fetus/enzymology , Liver/enzymology , Adult , Alleles , Biotransformation , Epigenesis, Genetic , Female , Genetic Variation , Genotype , Gestational Age , Humans , Hydroxylation , Microsomes, Liver/enzymology , Midazolam/pharmacokinetics , Pregnancy , RNA Splicing , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
18.
Am J Respir Cell Mol Biol ; 53(6): 802-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25909280

ABSTRACT

Histamine is an important mediator in the pathogenesis of asthma. Variation in genes along the histamine production, response, and degradation pathway may be important in predicting response to antihistamines. We hypothesize that differences exist among single-nucleotide polymorphisms (SNPs) in genes of the histamine pathway between children with allergic versus nonallergic asthma. Children (7-18 yr of age; n = 202) with asthma were classified as allergic or nonallergic based on allergy skin testing. Genotyping was performed to detect known SNPs (n = 10) among genes (HDC, HNMT, ABP1, HRH1, and HRH4) within the histamine pathway. Chi square tests and Cochran-Armitage Trend were used to identify associations between genetic variants and allergic or nonallergic asthma. Significance was determined by P < 0.05 and false-positive report probability. After correction for race differences in genotype were observed, HRH1-17 TT (6% allergic versus 0% nonallergic; P = 0.04), HNMT-464 TT (41% allergic versus 29% nonallergic; P = 0.04), and HNMT-1639 TT (30% allergic versus 20% nonallergic; P = 0.04) were overrepresented among children with allergic asthma. Genotype differences specifically among the African-American children were also observed: HRH1-17 TT (13% allergic versus 0% nonallergic; P = 0.04) and HNMT-1639 TT (23% allergic versus 3% nonallergic; P = 0.03) genotypes were overrepresented among African-American children with allergic asthma. Our study suggests that genetic variation within the histamine pathway may be associated with an allergic versus nonallergic asthma phenotype. Further studies are needed to determine the functional significance of identified SNPs and their impact on antihistamine response in patients with asthma and allergic disease.


Subject(s)
Amine Oxidase (Copper-Containing)/genetics , Asthma/genetics , Histamine N-Methyltransferase/genetics , Histamine/physiology , Receptors, Histamine/genetics , Adolescent , Black or African American , Asthma/ethnology , Asthma/immunology , Child , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Signal Transduction , White People
19.
Int J Exp Pathol ; 96(2): 81-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25670065

ABSTRACT

Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P < 0.05). CYP3A5 and CYP3A7 were expressed in 5 and 13 cases respectively (15.6%, 40.6%). There was no association between the expression of CYP3A isoforms and age, sex, tumour size, or location (pelvic or extra-pelvic). None of the biomarkers showed any correlation with overall or disease-free survival. In conclusion, expression of CYP3A isoforms is noted in Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Biomarkers, Tumor/metabolism , Bone Neoplasms/metabolism , Cytochrome P-450 CYP3A/metabolism , Sarcoma, Ewing/metabolism , Adolescent , Adult , Aged , Bone Neoplasms/mortality , Child , Disease Progression , Female , Follow-Up Studies , Humans , Immunohistochemistry , Longitudinal Studies , Male , Middle Aged , Neoplasm Metastasis , Prognosis , Protein Isoforms/metabolism , Sarcoma, Ewing/mortality , Survival Rate , Young Adult
20.
J Asthma ; 52(4): 353-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25295384

ABSTRACT

OBJECTIVE: Histamine is an important mediator in the pathophysiology of asthma. We have previously reported that HRH1 is differentially expressed among those with asthma compared to those without asthma. Single histamine-related genes have also been associated with asthma. We aimed to evaluate known single nucleotide polymorphisms (SNPs) in genes along the histamine biotransformation and response pathway, and determine their association with asthma and HRH1 mRNA expression. METHODS: We enrolled children and adults (n = 93) with/without asthma who met inclusion/exclusion criteria. Genotyping was performed for nine known SNPs in the HDC, HRH1, HRH4, HNMT and ABP1 genes. HRH1 mRNA expression was determined on RNA from buccal tissue. General linear model, Fisher's exact test and Chi-square test were used to determine differences in allele, genotype and haplotype frequency between subjects with and without asthma and differential HRH1 mRNA expression relative to genotype. Statistical significance was determined by p < 0.05. RESULTS: No difference was observed in genotype/allele frequency for the nine SNPs between subjects with and without asthma. The HNMT-1639C/-464C/314C/3'UTRA haplotype was more frequently observed in those without asthma than those with asthma (p = 0.03). We also observed genetic differences relative to race and gender. HNMT 314 genotype CT was more frequent in males with asthma compared to those without asthma (p = 0.04). CONCLUSIONS: Histamine pathway haplotype was associated with a diagnosis of asthma in our cohort but allele and genotype were not. Subgroup evaluations may also be important. Further studies are needed to determine the potential biological/clinical significance of our findings.


Subject(s)
Asthma/genetics , Histamine/metabolism , Adult , Black or African American , Amine Oxidase (Copper-Containing)/genetics , Child , Female , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Genotype , Haplotypes , Humans , Male , Pilot Projects , Polymorphism, Single Nucleotide , RNA, Messenger , Racial Groups , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/genetics , Receptors, Histamine H4 , Sex Factors , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...