Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Ultrasound Med Biol ; 46(8): 1998-2006, 2020 08.
Article in English | MEDLINE | ID: mdl-32451192

ABSTRACT

As focused ultrasound for blood-brain barrier disruption (FUS-BBBD) has progressed to human application, it has become necessary to consider the potential effects of prior irradiation treatments. Using a murine model, we examined the effects of whole-brain irradiation on FUS-BBBD. We first subjected half of the experimental cohort to daily 3-Gy whole-brain irradiation for 10 consecutive days. Then, microbubble-assisted FUS-BBBD was performed unilaterally while the contralateral sides served as unsonicated controls. FUS-BBBD, as evident by measuring the fluorescence yield of extravasated trypan blue dye, was identified at all sites with minimal or no apparent pathology. The peak fluorescence intensity caused by extravasated dye in the sonicated region was 17.5 ± 12.1% higher after radiation and FUS-BBBD than after FUS-BBBD alone, suggesting that prior radiation of the brain may be a sensitizing factor for FUS-BBBD. Radiation alone-without FUS-BBBD-resulted in mild BBB disruption. Hemorrhagic petechiae were observed in 9 of 12 radiated brains, with 77% of them clearly located outside the sonicated area; no petechiae were found in non-irradiated animals. This radiation protocol did not appear to increase the risk for vascular damage associated with FUS-BBBD.


Subject(s)
Blood-Brain Barrier/radiation effects , Cranial Irradiation/adverse effects , High-Intensity Focused Ultrasound Ablation , Animals , Brain/pathology , Brain/radiation effects , High-Intensity Focused Ultrasound Ablation/methods , Mice , Microbubbles/adverse effects , Optical Imaging/methods
2.
Sci Rep ; 10(1): 8766, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472017

ABSTRACT

We investigated controlled blood-brain barrier (BBB) disruption using a low-frequency clinical transcranial MRI-guided focused ultrasound (TcMRgFUS) device and evaluated enhanced delivery of irinotecan chemotherapy to the brain and a rat glioma model. Animals received three weekly sessions of FUS, FUS and 10 mg/kg irinotecan, or irinotecan alone. In each session, four volumetric sonications targeted 36 locations in one hemisphere. With feedback control based on recordings of acoustic emissions, 98% of the sonication targets (1045/1071) reached a pre-defined level of acoustic emission, while the probability of wideband emission (a signature for inertial cavitation) was than 1%. BBB disruption, evaluated by mapping the R1 relaxation rate after administration of an MRI contrast agent, was significantly higher in the sonicated hemisphere (P < 0.01). Histological evaluation found minimal tissue effects. Irinotecan concentrations in the brain were significantly higher (P < 0.001) with BBB disruption, but SN-38 was only detected in <50% of the samples and only with an excessive irinotecan dose. Irinotecan with BBB disruption did not impede tumor growth or increase survival. Overall these results demonstrate safe and controlled BBB disruption with a low-frequency clinical TcMRgFUS device. While irinotecan delivery to the brain was not neurotoxic, it did not improve outcomes in the F98 glioma model.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Blood-Brain Barrier , Irinotecan/pharmacokinetics , Magnetic Resonance Imaging/methods , Sonication/methods , Topoisomerase I Inhibitors/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/analysis , Antineoplastic Agents/therapeutic use , Brain Edema/etiology , Brain Neoplasms/drug therapy , Female , Glioma/drug therapy , Irinotecan/administration & dosage , Irinotecan/analysis , Irinotecan/therapeutic use , Male , Microbubbles , Pilot Projects , Prodrugs/administration & dosage , Prodrugs/analysis , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Purpura/etiology , Random Allocation , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Sonication/adverse effects , Sonication/instrumentation , Topoisomerase I Inhibitors/administration & dosage , Topoisomerase I Inhibitors/analysis , Topoisomerase I Inhibitors/therapeutic use
3.
Theranostics ; 9(21): 6284-6299, 2019.
Article in English | MEDLINE | ID: mdl-31534551

ABSTRACT

The blood-brain barrier (BBB) restricts delivery of most chemotherapy agents to brain tumors. Here, we investigated a clinical focused ultrasound (FUS) device to disrupt the BBB in rats and enhance carboplatin delivery to the brain using the F98 glioma model. Methods: In each rat, 2-3 volumetric sonications (5 ms bursts at 1.1 Hz for 75s) targeted 18-27 locations in one hemisphere. Sonication was combined with Definity microbubbles (10 µl/kg) and followed by intravenous carboplatin (50 mg/kg). Closed-loop feedback control was performed based on acoustic emissions analysis. Results: Safety and reliability were established in healthy rats after three sessions with carboplatin; BBB disruption was induced in every target without significant damage evident in MRI or histology. In tumor-bearing rats, concentrations of MRI contrast agent (Gadavist) were 1.7 and 3.3 times higher in the tumor center and margin, respectively, than non-sonicated tumors (P<0.001). Tissue-to-plasma ratios of intact carboplatin concentrations were increased by 7.3 and 2.9 times in brain and tumor respectively, at one hour after FUS and 4.2 and 2.4 times at four hours. Tumor volume doubling time in rats receiving FUS and carboplatin increased by 96% and 126% compared to rats that received carboplatin alone and non-sonicated controls, respectively (P<0.05); corresponding increases in median survival were 48% and 66% (P<0.01). Conclusion: Overall, this work demonstrates that actively-controlled BBB disruption with a clinical device can enhance carboplatin delivery without neurotoxicity at level that reduces tumor growth and improves survival in an aggressive and infiltrative rat glioma model.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Carboplatin/pharmacokinetics , Drug Delivery Systems , Glioma/drug therapy , Animals , Biological Transport , Brain/diagnostic imaging , Brain/drug effects , Brain Neoplasms/diagnostic imaging , Contrast Media/pharmacokinetics , Female , Glioma/diagnostic imaging , Male , Microbubbles , Rats , Sonication , Ultrasonography
4.
Ultrasound Med Biol ; 45(8): 2104-2117, 2019 08.
Article in English | MEDLINE | ID: mdl-31101446

ABSTRACT

High intensity focused ultrasound (HIFU) mechanical ablation is an emerging technique for non-invasive transcranial surgery. Lesions are created by driving inertial cavitation in tissue, which requires significantly less peak pressure and time-averaged power compared with traditional thermal ablation. The utility of mechanical ablation could be extended to the brain provided the pressure threshold for inertial cavitation can be reduced. In this study, the utility of perfluorobutane (PFB)-based phase-shift nanoemulsions (PSNEs) for lowering the inertial cavitation threshold and enabling focal mechanical ablation in the brain was investigated. We successfully achieved vaporization of PFB-based PSNEs at 1.8 MPa with a 740 kHz focused transducer with a pulsed sonication protocol (duty cycle = 1.5%, 10 min sonication) within intact CD-1 mice brains. Evidence is provided showing that a single bolus injection of PSNEs could be used to initiate and sustain inertial cavitation in cerebrovasculature for at least 10 min. Histologic analysis of brain slices after HIFU exposure revealed ischemic and hemorrhagic lesions with dimensions that were comparable to the focal zone of the transducer. These results suggest that PFB-based PSNEs may be used to significantly reduce the inertial cavitation threshold in the cerebrovasculature and, when combined with transcranial focused ultrasound, enable focal intracranial mechanical ablation.


Subject(s)
Brain/surgery , High-Intensity Focused Ultrasound Ablation/methods , Animals , Emulsions , Fluorocarbons , Male , Mice , Models, Animal , Nanotechnology/methods , Sonication , Volatilization
5.
Ultrasound Med Biol ; 44(12): 2609-2624, 2018 12.
Article in English | MEDLINE | ID: mdl-30201425

ABSTRACT

Thermal ablation of solid tumors via focused ultrasound (FUS) is a non-invasive image-guided alternative to conventional surgical resection. However, the usefulness of the technique is limited in vascularized organs because of convection of heat, resulting in long sonication times and unpredictable thermal lesion formation. Acoustic cavitation has been found to enhance heating but requires use of exogenous nuclei and sufficient acoustic monitoring. In this study, we employed phase-shift nanoemulsions (PSNEs) to promote cavitation and incorporated passive acoustic mapping (PAM) alongside conventional magnetic resonance imaging (MRI) thermometry within the bore of a clinical MRI scanner. Simultaneous PAM and MRI thermometry were performed in an in vivo rabbit tumor model, with and without PSNE to promote cavitation. Vaporization and cavitation of the nanoemulsion could be detected using PAM, which led to accelerated heating, monitored with MRI thermometry. The maximum heating assessed from MRI was well correlated with the integrated acoustic emissions, illustrating cavitation-enhanced heating. Examination of tissue revealed thermal lesions that were larger in the presence of PSNE, in agreement with the thermometry data. Using fixed exposure conditions over 94 sonications in multiple animals revealed an increase in the mean amplitude of acoustic emissions and resulting temperature rise, but with significant variability between sonications, further illustrating the need for real-time monitoring. The results indicate the utility of combined PAM and MRI for monitoring of tumor ablation and provide further evidence for the ability of PSNEs to promote cavitation-enhanced lesioning.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/surgery , Thermometry/methods , Animals , Disease Models, Animal , Male , Rabbits
6.
Proc Natl Acad Sci U S A ; 114(48): E10281-E10290, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29133392

ABSTRACT

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Blood-Brain Barrier/metabolism , Brain Neoplasms/therapy , Doxorubicin/analogs & derivatives , Drug Delivery Systems/methods , Glioma/therapy , Ultrasonic Therapy/methods , Acoustics/instrumentation , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Corpus Striatum/diagnostic imaging , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems/instrumentation , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Glioma/diagnostic imaging , Glioma/metabolism , Glioma/pathology , Hippocampus/diagnostic imaging , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Luminescent Proteins/chemistry , Luminescent Proteins/pharmacokinetics , Magnetic Resonance Imaging , Male , Microbubbles , Molecular Targeted Therapy , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Rats , Rats, Sprague-Dawley , Transducers , Ultrasonic Waves
7.
J Control Release ; 250: 77-85, 2017 03 28.
Article in English | MEDLINE | ID: mdl-27742444

ABSTRACT

Drug delivery in brain tumors is challenging because of the presence of blood-brain barrier (BBB) and the blood-tumor barrier (BTB). Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as disrupting the BBB in the surrounding tissue. In this study, dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) was used to characterize FUS-induced permeability changes in a rat glioma model and in the normal brain and to investigate the relationship between these changes and the resulting concentration of the chemotherapy agent doxorubicin (DOX). 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 10-12 after implantation, FUS-induced BTB disruption using 690kHz ultrasound and Definity microbubbles was performed in one of the tumors and in a normal brain region in each animal. After FUS, DOX was administered at a dose of 5.67mg/kg. The resulting DOX concentration was measured via fluorometry at 1 or 24h after FUS. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was significantly increased in both the sonicated tumors and in the normal brain tissue (P<0.001) between the two DCE-MRI acquisitions obtained before and after FUS, while no significant difference was found in the controls (non-sonicated tumor/normal brain tissue). DOX concentrations were also significantly larger than controls in both the sonicated tumors and in the normal tissue volumes at 1 and 24h after sonication. The DOX concentrations were significantly larger (P<0.01) in the control tumors harvested 1h after FUS than in those harvested at 24h, when the tumor concentrations were not significantly different than in the non-sonicated normal brain. In contrast, there was no significant difference in the DOX concentrations between the tumors harvested at 1 and 24h after FUS or in the concentrations measured in the brain at these time points. The transfer coefficient Ktrans for Gd-DTPA and the drug concentrations showed a good linear correlation (R2=0.56). Overall, these data suggest that FUS and microbubbles can not only increase DOX delivery across the BBB and BTB, but that it is retained in the tissue at significantly enhanced levels for at least 24h. Such enhanced retention may increase the potency of this chemotherapy agent and allow for reduced systemic doses. Furthermore, MRI-based estimates of Gd-DTPA transport across these barriers might be useful to estimate local DOX concentrations in the tumor and in the surrounding normal tissue.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Doxorubicin/administration & dosage , Gliosarcoma/drug therapy , Animals , Antineoplastic Agents/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Cell Line, Tumor , Contrast Media , Delayed-Action Preparations , Doxorubicin/metabolism , Drug Delivery Systems , Drug Liberation , Gadolinium DTPA , Gliosarcoma/blood supply , Gliosarcoma/metabolism , Humans , Male , Microbubbles , Permeability , Rats , Rats, Sprague-Dawley , Ultrasonic Waves
8.
Ultrasound Med Biol ; 43(2): 469-475, 2017 02.
Article in English | MEDLINE | ID: mdl-27789044

ABSTRACT

Numerous researchers are investigating the use of microbubble-enhanced ultrasound to disrupt the blood-brain barrier (BBB) and deliver drugs to the brain. This study investigated the impact of using oxygen as a carrier gas for anesthesia on microbubble activity and BBB disruption. Targets in mice were sonicated in combination with administration of Optison microbubbles (100 µL/kg) under isoflurane anesthesia with either oxygen or medical air. A 690-kHz focused ultrasound transducer applied 10-ms bursts at peak pressure amplitudes of 0.46-0.54 MPa (n = 2) or 0.34-0.36 MPa (n = 5). After sonication of two locations in one hemisphere, the carrier gas for the anesthesia was changed and the sonications were repeated in the contralateral hemisphere. The BBB disruption, measured via contrast-enhanced magnetic resonance imaging, was significantly greater (p < 0.001) with medical air than with oxygen. Harmonic emissions were also greater with air (p < 0.001), while the decay rate of the harmonic emissions was 1.5 times faster with oxygen. A good correlation (R2, 0.46) was observed between the harmonic emissions strength and magnetic resonance imaging signal enhancement. At 0.46-0.54 MPa, both the occurrence and strength of wideband emissions were greater with medical air. However, at lower peak pressure amplitudes of 0.34-0.36 MPa, the strength and probability for wideband emissions were higher with oxygen. Little or no effects were observed in histology at 0.34-0.36 MPa. These findings show that use of oxygen as a carrier gas can result in a substantial diminution of BBB disruption. These results should be taken into account when comparing studies from different researchers and in translating this method to humans.


Subject(s)
Albumins/pharmacokinetics , Blood-Brain Barrier/metabolism , Contrast Media/pharmacokinetics , Fluorocarbons/pharmacokinetics , Microbubbles , Oxygen/pharmacokinetics , Ultrasonic Waves , Animals , Blood-Brain Barrier/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Models, Animal
9.
Phys Med Biol ; 61(21): 7664-7687, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27740941

ABSTRACT

This study investigated thermal ablation and skull-induced heating with a 230 kHz transcranial MRI-guided focused ultrasound (TcMRgFUS) system in nonhuman primates. We evaluated real-time acoustic feedback and aimed to understand whether cavitation contributed to the heating and the lesion formation. In four macaques, we sonicated thalamic targets at acoustic powers of 34-560 W (896-7590 J). Tissue effects evaluated with MRI and histology were compared to MRI-based temperature and thermal dose measurements, acoustic emissions recorded during the experiments, and acoustic and thermal simulations. Peak temperatures ranged from 46 to 57 °C, and lesions were produced in 5/8 sonicated targets. A linear relationship was observed between the applied acoustic energy and both the focal and brain surface heating. Thermal dose thresholds were 15-50 cumulative equivalent minutes at 43 °C, similar to prior studies at higher frequencies. Histology was also consistent with earlier studies of thermal effects in the brain. The system successfully controlled the power level and maintained a low level of cavitation activity. Increased acoustic emissions observed in 3/4 animals occurred when the focal temperature rise exceeded approximately 16 °C. Thresholds for thermally-significant subharmonic and wideband emissions were 129 and 140 W, respectively, corresponding to estimated pressure amplitudes of 2.1 and 2.2 MPa. Simulated focal heating was consistent with the measurements for sonications without thermally-significant acoustic emissions; otherwise it was consistently lower than the measurements. Overall, these results suggest that the lesions were produced by thermal mechanisms. The detected acoustic emissions, however, and their association with heating suggest that cavitation might have contributed to the focal heating. Compared to earlier work with a 670 kHz TcMRgFUS system, the brain surface heating was substantially reduced and the focal heating was higher with this 230 kHz system, suggesting that a reduced frequency can increase the treatment envelope for TcMRgFUS and potentially reduce the risk of skull heating.


Subject(s)
Brain/surgery , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Ultrasonography/methods , Animals , Brain/diagnostic imaging , Brain/pathology , Female , Macaca mulatta , Male , Skull/diagnostic imaging , Skull/pathology , Skull/surgery , Ultrasonography/instrumentation
10.
J Ther Ultrasound ; 4: 17, 2016.
Article in English | MEDLINE | ID: mdl-27213044

ABSTRACT

We present here biophysical models to gain deeper insights into how an acoustic stimulus might influence or modulate neuronal activity. There is clear evidence that neural activity is not only associated with electrical and chemical changes but that an electro-mechanical coupling is also involved. Currently, there is no theory that unifies the electrical, chemical, and mechanical aspects of neuronal activity. Here, we discuss biophysical models and hypotheses that can explain some of the mechanical aspects associated with neuronal activity: the soliton model, the neuronal intramembrane cavitation excitation model, and the flexoelectricity hypothesis. We analyze these models and discuss their implications on stimulation and modulation of neuronal activity by ultrasound.

11.
J Neurosurg ; 125(6): 1539-1548, 2016 12.
Article in English | MEDLINE | ID: mdl-26848919

ABSTRACT

OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the "treatment envelope" for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 µl/kg). The rats were followed with MRI for 4-9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain.


Subject(s)
Ablation Techniques/methods , Brain/surgery , Contrast Media , Neurosurgical Procedures/methods , Surgery, Computer-Assisted , Ultrasonography, Interventional , Animals , Male , Rats , Rats, Sprague-Dawley , Time Factors , Ultrasonography, Interventional/methods
12.
J Neurosurg ; 124(5): 1450-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26381252

ABSTRACT

OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.


Subject(s)
Brain/surgery , Magnetic Resonance Imaging, Interventional/methods , Ultrasonic Surgical Procedures/methods , Ultrasonography, Interventional/methods , Animals , Brain/pathology , Feasibility Studies , Macaca mulatta , Magnetic Resonance Imaging, Interventional/instrumentation , Skull Base/pathology , Skull Base/surgery , Ultrasonic Surgical Procedures/instrumentation , Ultrasonography, Interventional/instrumentation
13.
Ultrasound Med Biol ; 42(2): 481-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26617243

ABSTRACT

The purpose of this study was to investigate the effects on the brain of multiple sessions of blood-brain barrier (BBB) disruption using focused ultrasound (FUS) in combination with micro-bubbles over a range of acoustic exposure levels. Six weekly sessions of FUS, using acoustical pressures between 0.66 and 0.80 MPa, were performed under magnetic resonance guidance. The success and degree of BBB disruption was estimated by signal enhancement of post-contrast T1-weighted imaging of the treated area. Histopathological analysis was performed after the last treatment. The consequences of repeated BBB disruption varied from no indications of vascular damage to signs of micro-hemorrhages, macrophage infiltration, micro-scar formations and cystic cavities. The signal enhancement on the contrast-enhanced T1-weighted imaging had limited value for predicting small-vessel damage. T2-weighted imaging corresponded well with the effects on histopathology and could be used to study treatment effects over time. This study demonstrates that repeated BBB disruption by FUS can be performed with no or limited damage to the brain tissue.


Subject(s)
Blood-Brain Barrier/pathology , Blood-Brain Barrier/radiation effects , High-Energy Shock Waves , Sonication/methods , Animals , Blood-Brain Barrier/physiology , Radiation Dosage , Rats , Rats, Sprague-Dawley
14.
Sci Rep ; 5: 16253, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26542745

ABSTRACT

Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.


Subject(s)
Cerebral Cortex/physiology , Neurons/physiology , Animals , Blood-Brain Barrier , Cerebral Cortex/cytology , Electric Stimulation , Evoked Potentials, Somatosensory , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/administration & dosage
15.
J Control Release ; 204: 60-9, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25724272

ABSTRACT

Transcranial MRI-guided focused ultrasound is a rapidly advancing method for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). The method's main advantages are that it is both targeted and noninvasive, and that it can be easily repeated. Studies have shown that liposomal doxorubicin (Lipo-DOX), a chemotherapy agent with promise for tumors in the central nervous system, can be delivered into the brain across BBB. However, prior studies have suggested that doxorubicin can be significantly neurotoxic, even at small concentrations. Here, we studied whether multiple sessions of Lipo-DOX administered after FUS-induced BBB disruption (FUS-BBBD) induces severe adverse events in the normal brain tissues. First, we used fluorometry to measure the doxorubicin concentrations in the brain after FUS-BBBD to ensure that a clinically relevant doxorubicin concentration was achieved in the brain. Next, we performed three weekly sessions with FUS-BBBD±Lipo-DOX administration. Five to twelve targets were sonicated each week, following a schedule described previously in a survival study in glioma-bearing rats (Aryal et al., 2013). Five rats received three weekly sessions where i.v. injected Lipo-DOX was combined with FUS-BBBD; an additional four rats received FUS-BBBD only. Animals were euthanized 70days from the first session and brains were examined in histology. We found that clinically-relevant concentrations of doxorubicin (4.8±0.5µg/g) were delivered to the brain with the sonication parameters (0.69MHz; 0.55-0.81MPa; 10ms bursts; 1Hz PRF; 60s duration), microbubble concentration (Definity, 10µl/kg), and the administered Lipo-DOX dose (5.67mg/kg) used. The resulting concentration of Lipo-DOX was reduced by 32% when it was injected 10min after the last sonication compared to cases where the agent was delivered before sonication. In histology, the severe neurotoxicity observed in some previous studies with doxorubicin by other investigators was not observed here. However, four of the five rats who received FUS-BBBD and Lipo-DOX had regions (dimensions: 0.5-2mm) at the focal targets with evidence of minor prior damage, either a small scar (n=4) or a small cyst (n=1). The focal targets were unaffected in rats who received FUS-BBBD alone. The result indicates that while delivery of Lipo-DOX to the rat brain might result in minor damage, the severe neurotoxicity seen in earlier works does not appear to occur with delivery via FUS-BBB disruption. The damage may be related to capillary damage produced by inertial cavitation, which might have resulted in excessive doxorubicin concentrations in some areas.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Blood-Brain Barrier/metabolism , Doxorubicin/analogs & derivatives , Drug Delivery Systems/methods , Sonication/methods , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Brain/blood supply , Brain/metabolism , Capillary Permeability , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Magnetic Resonance Imaging , Male , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Rats, Sprague-Dawley , Tissue Distribution
16.
Phys Med Biol ; 60(6): 2511-27, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25746014

ABSTRACT

Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the 'blood tumor barrier' (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg(-1). This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823 ± 600, 1817 ± 732 and 2432 ± 448 ng g(-1)) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222 ± 784, 3687 ± 796 and 5658 ± 821 ng g(-1)) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Doxorubicin/analogs & derivatives , Glioma/drug therapy , Microbubbles , Sonication/methods , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/drug effects , Capillary Permeability , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Gadolinium DTPA/chemistry , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use , Rats , Rats, Sprague-Dawley
17.
Phys Med Biol ; 59(13): 3465-81, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24899634

ABSTRACT

Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could potentially be used to reduce the time and/or acoustic intensity required for HIFU-mediated heating, thereby increasing the feasibility and clinical efficacy of HIFU thermal ablation therapy.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging , Nanotechnology/methods , Neoplasms/surgery , Surgery, Computer-Assisted/methods , Acoustics , Animals , Emulsions , Neoplasms/pathology , Rabbits , Thermometry , Volatilization
18.
J Neurosurg ; 119(5): 1208-20, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24010975

ABSTRACT

OBJECT: Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. METHODS: In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. RESULTS: Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. CONCLUSIONS: This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in deep brain structures while preserving function in adjacent nerves. Because of low vascularity--and thus a low microbubble concentration--some large white matter tracts appear to have some natural resistance to this type of ablation compared with gray matter. While future work is needed to develop methods of monitoring the procedure and establishing its safety at deep brain targets, the technique does appear to be a potential solution that allows FUS ablation of deep brain targets while sparing adjacent nerve structures.


Subject(s)
High-Intensity Focused Ultrasound Ablation/standards , Visual Pathways/surgery , Animals , Male , Rats , Rats, Wistar
19.
Ultrasound Med Biol ; 39(8): 1420-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23743099

ABSTRACT

Low-intensity focused ultrasound was applied with microbubbles (Definity, Lantheus Medical Imaging, North Billerica, MA, USA; 0.02 mL/kg) to produce brain lesions in 50 rats at 558 kHz. Burst sonications (burst length: 10 ms; pulse repetition frequency: 1 Hz; total exposure: 5 min; acoustic power: 0.47-1.3 W) generated ischemic or hemorrhagic lesions at the focal volume revealed by both magnetic resonance imaging and histology. Shorter burst time (2 ms) or shorter sonication time (1 min) reduced the probability of lesion production. Longer pulses (200 ms, 500 ms and continuous wave) caused significant near-field damage. Using microbubbles with focused ultrasound significantly reduced acoustic power levels and, therefore, avoided skull heating issues and potentially can extend the treatable volume of transcranial focused ultrasound to brain tissues close to the skull.


Subject(s)
Brain/pathology , Brain/surgery , High-Intensity Focused Ultrasound Ablation/methods , Microbubbles/therapeutic use , Animals , Radiation Dosage , Rats , Rats, Sprague-Dawley , Treatment Outcome
20.
J Control Release ; 169(1-2): 103-11, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23603615

ABSTRACT

The blood-brain-barrier (BBB) prevents the transport of most anticancer agents to the central nervous system and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels, along with several other factors, creates additional barriers for drug treatment of brain tumors. Focused ultrasound (FUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and the "blood-tumor barrier". Here, we tested the impact of three weekly sessions of FUS and liposomal doxorubicin (DOX) in 9L rat glioma tumors. Animals that received FUS+DOX (N=8) had a median survival time that was increased significantly (P<0.001) compared to animals who received DOX only (N=6), FUS only (N=8), or no treatment (N=7). Median survival for animals that received FUS+DOX was increased by 100% relative to untreated controls, whereas animals who received DOX alone had only a 16% improvement. Animals who received only FUS showed no improvement. No tumor cells were found in histology in 4/8 animals in the FUS+DOX group, and in two animals, only a few tumor cells were detected. Adverse events in the treatment group included skin toxicity, impaired activity, damage to surrounding brain tissue, and tissue loss at the tumor site. In one animal, intratumoral hemorrhage was observed. These events are largely consistent with known side effects of doxorubicin and with an extensive tumor burden. Overall this work demonstrates that multiple sessions using this FUS technique to enhance the delivery of liposomal doxorubicin have a pronounced therapeutic effect in this rat glioma model.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Brain Neoplasms/drug therapy , Doxorubicin/analogs & derivatives , Drug Delivery Systems/instrumentation , Gliosarcoma/drug therapy , Sonication/instrumentation , Animals , Antibiotics, Antineoplastic/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/pathology , Brain Neoplasms/pathology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Equipment Design , Gliosarcoma/pathology , Male , Microbubbles , Permeability , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/therapeutic use , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...