Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38472786

ABSTRACT

Seeds of "sweet lupins" have been playing an increasing role in the food industry. Lupin proteins may be used for producing a variety of foods, including pasta, bread, cookies, dairy products, and coffee substitutes. In a small percentage of the population, lupin consumption may elicit allergic reactions, either due to primary sensitization to lupin or due to cross-allergy with other legumes. Thus, lupin has to be declared on commercial food products according to EU food regulations. In this study, we investigated the influence of roasting seeds of the L. angustifolius cultivar "Boregine" on the detectability of lupin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), ELISAs, LC-MS/MS, and real-time PCR. Seeds were roasted by fluidized bed roasting, and samples were drawn at seed surface temperatures ranging from 98 °C to 242 °C. With increasing roasting temperature, the extractability of proteins and DNA decreased. In addition, roasting resulted in lower detectability of lupin proteins by ELISAs and LC-MS/MS and lower detectability of DNA by real-time PCR. Our results suggest reduced allergenicity of roasted lupin seeds used for the production of "lupin coffee"; however, this has to be confirmed in in vivo studies.

2.
J Pharm Biomed Anal ; 207: 114341, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34474952

ABSTRACT

This paper highlights the potential of electrochemical flow cells for oxidative-stress testing of active pharmaceutical ingredients using canagliflozin as a model substance. Based on design of experiments, we developed our method through a reduced combinatorial design, optimizing the following independent variables: cell size, electrolyte flow rate, electrolyte concentration, and electrolyte pH. Using ammonium phosphate buffer with methanol in a 50/50 vol ratio as a working electrolyte, we electrochemically oxidized samples and analyzed them by high-performance liquid chromatography, considering the following dependent variables: peak area of each impurity, peak area of canagliflozin, and the percentage of the corresponding peak areas. Our results showed that the most significant independent variables were electrolyte pH and flow rate. By data optimization, we determined the most suitable conditions for electrochemical oxidation of canagliflozin, namely 50 µm cell size, 300 mM electrolyte concentration, 0.1 mL/h electrolyte flow rate, and electrolyte pH = 4. The repeatability of the method, expressed as the relative standard deviation of the canagliflozin peak area, measured in ten separately oxidized samples, was 1.64%. For comparison purposes, we performed a degradation experiment using hydrogen peroxide, identifying five identical impurities in both cases, as confirmed by mass spectrometry. The degradation products formed when using the chemical method after 1, 3, and 7 days totaled 0.09%, 0.75%, and 3.75%, respectively, and the degradation products formed when using the electrochemical method after 3 h totaled 3.11%. Oxidation with hydrogen peroxide required 7 days, whereas electrochemical oxidation was completed in 3 h. Overall, the electrochemical method significantly saves time and reduces the consumption of active ingredients and solvents thanks to the miniaturized size of the electrochemical cell, thereby minimizing the costs of forced degradation studies.


Subject(s)
Canagliflozin , Electrochemical Techniques , Chromatography, High Pressure Liquid , Mass Spectrometry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...