Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nucl Med Biol ; 31(5): 597-603, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219278

ABSTRACT

We describe a new method for the asymmetric synthesis of [(18)F]fluorinated aromatic alpha-amino acids (FAA) under phase transfer conditions using achiral glycine derivative NiPBPGly and (S)-NOBIN as a novel substrate/catalyst pair. The key alkylation step proceeds under mild conditions. Substituted [(18)F]fluorobenzylbromides were prepared using nucleophilic [(18)F]fluoride and were used as alkylation agents. Two important FAA, 2-[(18)F]fluoro-L-tyrosine (2-FTYR) and 6-[(18)F]fluoro-L-3,4-dihydroxyphenylalanine (6-FDOPA), were synthesized with an ee of 92 and 96%, respectively. The total synthesis time was 110-120 min and radiochemical yields (d.c.) were 25+/-6% for 2-FTYR and 16+/-5% for 6-FDOPA.


Subject(s)
2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/pharmacokinetics , Glioma/metabolism , Isotope Labeling/methods , Naphthols/chemistry , Tyrosine/chemistry , Tyrosine/pharmacokinetics , Animals , Catalysis , Dihydroxyphenylalanine/isolation & purification , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/isolation & purification , Fluorine Radioisotopes/pharmacokinetics , Glioma/diagnostic imaging , Isomerism , Metabolic Clearance Rate , Organ Specificity , Phase Transition , Radionuclide Imaging , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/isolation & purification , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution , Tyrosine/isolation & purification
2.
J Org Chem ; 66(4): 1359-65, 2001 Feb 23.
Article in English | MEDLINE | ID: mdl-11312967

ABSTRACT

Whereas the Cu(II)-mediated oxidative coupling of 2-aminonaphthalenes 7a and 7b results in the clean formation of 1,1'-binaphthyls 13a and 13b, respectively, their higher homologues and congeners 8-12 have been found to exhibit a different reaction pattern. Thus, 2-aminoanthracene (8) gave a approximately 1:1 mixture of the expected bianthryl derivative 15 and the carbazole 16, whereas the 9-aminophenanthrene (10), 3-phenyl-1-aminonaphthalene (11), and 2-aminochrysene (12) produced almost exclusively the corresponding carbazoles 19, 20, and 21, respectively. By contrast, the isomeric 3-aminophenanthrene (9) gave rise to the azo compound 17 as a result of the preferential oxidation on the nitrogen. The carbazoles have been shown to arise directly from the coupling reactions rather than from the primarily formed binaphthyls. Alternatively, carbazole 19 can also be prepared from 1b on reaction with hydrazine. On the other hand, treatment of 3a with hydrazine resulted in the formation of a approximately 2:7 mixture of amine 11 and arylhydrazine 22. 2,2'-Diamino-1,1'-bianthryl (15) has been resolved into enantiomers via cocrystallization with (-)-N-benzylcinchonidinium chloride and shown to have (R)-(-)-15 configuration by X-ray crystallography.

3.
J Org Chem ; 65(21): 7041-8, 2000 Oct 20.
Article in English | MEDLINE | ID: mdl-11031026

ABSTRACT

A new type of efficient chiral catalyst has been elaborated for asymmetric C-alkylation of CH acids under PTC conditions. Sodium alkoxides formed from chiral derivatives of tartaric acid and aminophenols (TADDOL's 2a-e and NOBIN's 3a-h) can be used as chiral catalysts in the enantioselective alkylation, as exemplified by the reaction of Schiff's bases 1a-e derived from alanine esters and benzaldehydes with active alkyl halides. Acid-catalyzed hydrolysis of the products formed in the reaction afforded (R)-alpha-methylphenylalanine, (R)-alpha-naphthylmethylalanine, and (R)-alpha-allylalanine in 61-93% yields and with ee 69-93%. The procedure could be successfully scaled up to 6 g of substrate 1b. When (S,S)-TADDOL or (R)-NOBIN are used, the (S)-amino acids are formed. A mechanism rationalizing the observed features of the reaction has been suggested.

4.
Chemistry ; 6(23): 4348-57, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11140964

ABSTRACT

The axially chiral ligands 2-(diphenylphosphanyl)-2'-methoxy-1,1'-binaphthalene (MOP; 6) and 2'-dimethylamino-2-(diphenylphosphanyl)-1,1'-binaphthalene (MAP; 7) coordinate to a cationic allylpalladium fragment in an unusual bidentate (P,C)-mode through the triarylphosphane and ipso-carbon atom (C1'). The readily prepared MAP and MOP complexes [Pd[(P,C)-(L)](n3-allyl)][OTf] (9 (L = 7) and 10 (L = 6)) have been characterised in solution (NMR), in which two diastereoisomeric rotamers are observed. The stereochemical identity of the rotamers is established by one- and two-dimensional NMR spectroscopy experiments. In both the solid state and in solution, the allyl unit is shown to coordinate in a slightly distorted n3-mode that results in a more alkene-like character at the allyl terminus trans to phosphane ligand. The opposite allyl terminus, which is trans to the ipsocarbon atom (C1'), is more strongly bound and the dominant allyl stereodynamic process involves C-C bond rotation in an n'-allyl intermediate bound through this carbon. Palladium complexes of MAP and MOP are very efficient catalysts for allylic alkylation of racemic cyclopentenyl pivalate with [NaCH(CO2Me)2] in THF. Isotopic desymmetrisation revealed that the reaction occurs with powerful stereochemical memory effects and consequently with low global ee values. The memory effect is suggested to arise through selective generation of diastereoisomeric [Pd[(P,C)-L](n3-cyclopentenyl)]+ ions (L = MAP or MOP) and subsequent capture by nucleophile before ion-pair collapse or equilibration occurs.

SELECTION OF CITATIONS
SEARCH DETAIL