Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(15): 3468-3471, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28622881

ABSTRACT

Discovery of sofosbuvir has radically changed hepatitis C treatment and nucleoside/tide NS5B inhibitors are now viewed as one of the key components in combination therapies with other direct-acting antiviral agents. As part of our program to identify new nucleoside inhibitors of HCV replication, we now wish to report on the discovery of ß-d-2'-deoxy-2'-dichlorouridine nucleotide prodrugs as potent inhibitors of HCV replication. Although, cytidine analogues have long been recognized to be metabolized to both cytidine and uridine triphosphates through the action of cytidine deaminase, uridine analogues are generally believed to produce exclusively uridine triphosphate. Detailed investigation of the intracellular metabolism of our newly discovered uridine prodrugs, as well as of sofosbuvir, has now revealed the formation of both uridine and cytidine triphosphates. This occurs, not only in vitro in cell lines, but also in vivo upon oral dosing to dogs.


Subject(s)
Antiviral Agents/pharmacology , Deoxyuridine/analogs & derivatives , Hepacivirus/drug effects , Hepatitis C/drug therapy , Prodrugs/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Cells, Cultured , Deoxyuridine/chemistry , Deoxyuridine/metabolism , Deoxyuridine/pharmacology , Dogs , Drug Discovery , Hepacivirus/physiology , Hepatitis C/virology , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Prodrugs/chemistry , Prodrugs/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
Bioorg Med Chem Lett ; 22(9): 3265-8, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22472694

ABSTRACT

4'-Azido-2'-deoxy-2'-methylcytidine (14) is a potent nucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase, displaying an EC(50) value of 1.2 µM and showing moderate in vivo bioavailability in rat (F=14%). Here we describe the synthesis and biological evaluation of 4'-azido-2'-deoxy-2'-methylcytidine and prodrug derivatives thereof.


Subject(s)
Antiviral Agents/chemistry , Cytidine/analogs & derivatives , Deoxycytidine/analogs & derivatives , Hepacivirus/drug effects , Prodrugs/pharmacology , Animals , Antiviral Agents/pharmacology , Cytidine/pharmacology , Deoxycytidine/pharmacology , Drug Discovery , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Rats , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects
3.
Bioorg Med Chem Lett ; 20(14): 4004-11, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20541405

ABSTRACT

Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Protease Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Area Under Curve , Caco-2 Cells , Humans , Intracellular Signaling Peptides and Proteins , Microsomes, Liver/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 18(17): 4853-8, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18678486

ABSTRACT

SAR analysis performed with a limited set of cyclopentane-containing macrocycles led to the identification of N-[17-[2-(4-isopropylthiazole-2-yl)-7-methoxy-8-methylquinolin-4-yloxy]-13-methyl-2,14-dioxo-3,13-diazatricyclo [13.3.0.0(4,6)]octadec-7-ene-4-carbonyl](cyclopropyl)sulfonamide (TMC435350, 32c) as a potent inhibitor of HCV NS3/4A protease (K(i)=0.36nM) and viral replication (replicon EC(50)=7.8nM). TMC435350 also displayed low in vitro clearance and high permeability, which were confirmed by in vivo pharmacokinetic studies. TMC435350 is currently being evaluated in the clinics.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Cyclopentanes/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Heterocyclic Compounds, 3-Ring/pharmacology , Macrocyclic Compounds/pharmacology , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Animals , Caco-2 Cells , Cell Line , Cyclopentanes/chemistry , Dogs , Hepatitis C/drug therapy , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Intracellular Signaling Peptides and Proteins , Macrocyclic Compounds/chemistry , Male , Protease Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Simeprevir , Structure-Activity Relationship , Sulfonamides/chemistry
5.
Bioorg Med Chem ; 15(22): 7184-202, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17845856

ABSTRACT

Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.


Subject(s)
Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Cell Line , Crystallography, X-Ray , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...