Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 43(3): 1606-1622, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34698104

ABSTRACT

In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.


Subject(s)
Biomarkers/blood , Dietary Supplements , Health Impact Assessment , Inflammation Mediators/blood , Obesity/blood , Vitamin D/administration & dosage , Body Weights and Measures , Disease Susceptibility , Female , Humans , Male , Obesity/diagnosis , Obesity/etiology , Organ Size
2.
Nutrients ; 13(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34444666

ABSTRACT

The rise in energy drink (ED) intake in the general population and athletes has been achieved with smart and effective marketing strategies. There is a robust base of evidence showing that adolescents are the main consumers of EDs. The prevalence of ED usage in this group ranges from 52% to 68%, whilst in adults is estimated at 32%. The compositions of EDs vary widely. Caffeine content can range from 75 to 240 mg, whereas the average taurine quantity is 342.28 mg/100 mL. Unfortunately, exact amounts of the other ED elements are often not disclosed by manufacturers. Caffeine and taurine in doses 3-6 mg/kg and 1-6 g, respectively, appear to be the main ergogenic elements. However, additive or synergic properties between them seem to be implausible. Because of non-unified protocol design, presented studies show inconsistency between ED ingestion and improved physical performance. Potential side effects caused by abusive consumption or missed contraindications are the aspects that are the most often overlooked by consumers and not fully elucidated by ED producers. In this review, the authors aimed to present the latest scientific information on ED components and their possible impact on improving physical performance as well as to bring emphasis to the danger of inordinate consumption.


Subject(s)
Caffeine/adverse effects , Energy Drinks/adverse effects , Performance-Enhancing Substances/adverse effects , Physical Endurance/drug effects , Taurine/adverse effects , Adolescent , Adult , Age Factors , Child , Consumer Product Safety , Drug Interactions , Energy Intake , Humans , Nutritive Value , Recommended Dietary Allowances , Risk Assessment , Risk Factors , Young Adult
3.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187206

ABSTRACT

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are oral anti-hyperglycemic agents approved for the treatment of type 2 diabetes mellitus. Some reports suggest their presence in the central nervous system and possible neuroprotective properties. SGLT2 inhibition by empagliflozin has shown to reduce amyloid burden in cortical regions of APP/PS1xd/db mice. The same effect was noticed regarding tau pathology and brain atrophy volume. Empagliflozin presented beneficial effect on cognitive function, which may be connected to an increase in cerebral brain-derived neurotrophic factor. Canagliflozin and dapagliflozin may possess acetylcholinesterase inhibiting activity, resembling in this matter Alzheimer's disease-registered therapies. SGLT2 inhibitors may prove to impact risk factors of atherosclerosis and pathways participating both in acute and late stage of stroke. Their mechanism of action can be related to induction in hepatocyte nuclear factor-1α, vascular endothelial growth factor-A, and proinflammatory factors limitation. Empagliflozin may have a positive effect on preservation of neurovascular unit in diabetic mice, preventing its aberrant remodeling. Canagliflozin seems to present some cytostatic properties by limiting both human and mice endothelial cells proliferation. The paper presents potential mechanisms of SGLT-2 inhibitors in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.

4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326620

ABSTRACT

The lack of effective Alzheimer's disease treatment is becoming a challenge for researchers and prompts numerous attempts to search for and develop better therapeutic solutions. Compounds that affect several routes of the neurodegeneration cascade leading to the development of disease are of particular interest. An example of such substances is resveratrol and its synthetic and natural derivatives, which have gained popularity in recent years and show promise as a possible new therapeutic option in the approach to Alzheimer's disease treatment. In this article, the state of the art evidence on the role of resveratrol (RSV) in neuroprotection is presented; research results are summarized and the importance of resveratrol and its derivatives in the treatment of Alzheimer's disease are underlined. It also focuses on various modifications of the resveratrol molecule that should be taken into account in the design of future research on drugs against Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Blood-Brain Barrier/drug effects , Metabolic Diseases/drug therapy , Neuroprotection/drug effects , Resveratrol/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Benzofurans/pharmacology , Blood-Brain Barrier/metabolism , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/immunology , Central Nervous System Diseases/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Metabolic Diseases/metabolism , Oxidative Stress/drug effects , Resveratrol/analogs & derivatives , Stilbenes/pharmacology , tau Proteins/metabolism
5.
Int J Mol Sci ; 21(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218354

ABSTRACT

Vildagliptin is a representative of Dipeptidyl Peptidase-4 (DPP-4) inhibitors, antihyperglycemic drugs, approved for use as monotherapy and combination therapy in type 2 diabetes mellitus. By inhibiting enzymatic decomposition, DPP-4 inhibitors increase the half-life of incretins such as GLP-1 (Glucagon-like peptide-1) and GIP (Gastric inhibitors polypeptide) and prolong their action. Some studies present results suggesting the anti-sclerotic and vasculoprotective effects of vildagliptin reaching beyond glycemic control. Vildagliptin is able to limit inflammation by suppression of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathway and proinflammatory agents such as TNF-α (tumor necrosis factor α), IL-1ß (Interleukin-1ß), and IL-8 (Interleukin 8). Moreover, vildagliptin regulates lipid metabolism; attenuates postprandial hypertriglyceridemia; and lowers serum triglycerides, apolipoprotein B, and blood total cholesterol levels. This DPP-4 inhibitor also reduces macrophage foam cell formation, which plays a key role in atheromatous plaque formation and stability. Vildagliptin reduces vascular stiffness via elevation of nitric oxide synthesis, improves vascular relaxation, and results in reduction in both systolic and diastolic blood pressure. Treatment with vildagliptin lowers the level of PAI-1 presenting possible antithrombotic effect. By affecting the endothelium, inflammation, and lipid metabolism, vildagliptin may affect the development of atherosclerosis at its various stages. The article presents a summary of the studies assessing vasculoprotective effects of vildagliptin with special emphasis on atherogenesis.


Subject(s)
Atherosclerosis/drug therapy , Vildagliptin/therapeutic use , Animals , Blood Pressure , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Inflammation/drug therapy , Lipid Metabolism Disorders/drug therapy , Vildagliptin/pharmacology
6.
Biomed Res Int ; 2020: 9012071, 2020.
Article in English | MEDLINE | ID: mdl-32076619

ABSTRACT

Resveratrol (3,5,4'-trihydroxystilbene) is a chemical compound belonging to the group of polyphenols and flavonoids. The aim of the present study was to determine the influence of resveratrol application along with certain modulating factors, such as 8Br-cGMP-activator of cGMP-dependent protein kinases, HA-1077-Rho-kinase inhibitor, and Bay K8644-calcium channel agonist, on VMSCs constriction triggered by phenylephrine. Resveratrol at a dose of 10 mg/kg/24 h administered for 4 weeks reduced the reactivity of the arteries to the pressure action of catecholamines. Tests performed after four weeks of resveratrol administration showed that 8Br-cGMP at the concentrations of 0.01 mM/l and 0.1 mM/l intensifies this effect. Simultaneous resveratrol and Bay K8644 administration led to a significant decrease in contractility compared to the vessels collected from animals (Res-). This effect was dependent on the concentration of Bay K8644. Resveratrol seems to be counteractive against Bay K8644 by blocking L-type calcium channels. As the concentration of HA-1077 increased, there was a marked hyporeactivity of the vessels to the pressure effects of phenylephrine. The results indicate synergy between resveratrol and Rho-kinase inhibition.


Subject(s)
Muscle, Smooth, Vascular/drug effects , Resveratrol/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Arteries/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Cyclic GMP/antagonists & inhibitors , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/metabolism , Male , Muscle Contraction/drug effects , Phenylephrine/pharmacology , Protein Kinase Inhibitors/pharmacology , Rats , rho-Associated Kinases/metabolism
7.
Int J Mol Sci ; 20(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434198

ABSTRACT

Linagliptin is a representative of dipeptidyl peptidase 4 (DPP-4) inhibitors which are registered and used effectively in a treatment of diabetes mellitus type 2. They increase the levels of active forms of endogenous incretins such as GLP-1 and GIP by inhibiting their enzymatic decomposition. Scientific reports suggest beneficial effects of linagliptin administration via immunological and biochemical pathways involved in neuroprotective processes of CNS. Linagliptin's administration leads to a decrease in the concentration of proinflammatory factors such as: TNF-α, IL-6 and increases the number of anti-inflammatory patrolling monocytes CX3CR1bright. Significant reduction in Aß42 level has been associated with the use of linagliptin implying potential application in Alzheimer's disease. Linagliptin improved vascular functions by increasing production of nitric oxide (NO) and limiting concentration of apolipoprotein B. Linagliptin-induced decrease in macrophages infiltration may provide improvement in atheromatous plaque stabilization. Premedication with linagliptin increases neuron's survival after stroke and augments neuronal stem cells proliferation. It seems to be connected with SDF-1α/CXCR4 signaling pathway. Linagliptin prevented abnormal proliferation and migration of rat brain microvascular endothelial cells in a state of hypoperfusion via SIRT1/HIF-1α/VEGF pathway. The article presents a summary of the studies assessing neuroprotective properties of linagliptin with special emphasis on cerebral ischemia, vascular dysfunction and neurodegenerative diseases.


Subject(s)
Brain Ischemia/drug therapy , Linagliptin/therapeutic use , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Cell Proliferation/drug effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Male , Nitric Oxide/metabolism , Sirtuin 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Mol Sci ; 20(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823403

ABSTRACT

Liraglutide is a GLP-1 analog (glucagon like peptide-1) used primarily in the treatment of diabetes mellitus type 2 (DM2) and obesity. The literature starts to suggest that liraglutide may reduce the effects of ischemic stroke by activating anti-apoptotic pathways, as well as limiting the harmful effects of free radicals. The GLP-1R expression has been reported in the cerebral cortex, especially occipital and frontal lobes, the hypothalamus, and the thalamus. Liraglutide reduced the area of ischemia caused by MCAO (middle cerebral artery occlusion), limited neurological deficits, decreased hyperglycemia caused by stress, and presented anti-apoptotic effects by increasing the expression of Bcl-2 and Bcl-xl proteins and reduction of Bax and Bad protein expression. The pharmaceutical managed to decrease concentrations of proapoptotic factors, such as NF-κB (Nuclear Factor-kappa ß), ICAM-1 (Intercellular Adhesion Molecule 1), caspase-3, and reduced the level of TUNEL-positive cells. Liraglutide was able to reduce the level of free radicals by decreasing the level of malondialdehyde (MDA), and increasing the superoxide dismutase level (SOD), glutathione (GSH), and catalase. Liraglutide may affect the neurovascular unit causing its remodeling, which seems to be crucial for recovery after stroke. Liraglutide may stabilize atherosclerotic plaque, as well as counteract its early formation and further development. Liraglutide, through its binding to GLP-1R (glucagon like peptide-1 receptor) and consequent activation of PI3K/MAPK (Phosphoinositide 3-kinase/mitogen associated protein kinase) dependent pathways, may have a positive impact on Aß (amyloid beta) trafficking and clearance by increasing the presence of Aß transporters in cerebrospinal fluid. Liraglutide seems to affect tau pathology. It is possible that liraglutide may have some stem cell stimulating properties. The effects may be connected with PKA (phosphorylase kinase A) activation. This paper presents potential mechanisms of liraglutide activity in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/therapeutic use , Brain Ischemia/drug therapy , Liraglutide/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Antioxidants/pharmacology , Apoptosis , Brain/drug effects , Brain/metabolism , Humans , Liraglutide/pharmacology , Neuroprotective Agents/pharmacology
9.
Biomed Res Int ; 2019: 4853695, 2019.
Article in English | MEDLINE | ID: mdl-31915695

ABSTRACT

Considered safe and often available as over-the-counter (OTC) drugs, proton pump inhibitors (PPI) are one of the most frequently used medicines. Over recent years much research analyzing PPI has been conducted and these studies shed light on PPI side effects and the mechanisms of these processes. In this study we summarize the findings of these studies and through deduction present some hypotheses on the impact of PPI on health. Of particular interest is the impact of PPI on hearing loss development. However, despite this side effect being localized, its mechanisms are complex, systemic and involve changes in whole body. This paper summarizes how through, inter alia, alterations in the circulatory system, respiratory system, central nervous system and metabolism PPI can cause hearing impairment, which can occur in every age group and is connected with long-term use of this group of drugs. This article also discusses the role PPI plays in the acceleration of presbycusis development, in relation to the fact that older people are the group who most frequently use PPI in long term. Hearing loss negatively impacts affects quality of life, especially among older patients who are also the most afflicted group; administration of PPI should therefore be considered carefully, taking into consideration all potential benefits and side effects.


Subject(s)
Hearing Loss/chemically induced , Proton Pump Inhibitors/adverse effects , Cardiovascular System/drug effects , Humans , Immune System/drug effects , Metabolism/drug effects
10.
Nutrients ; 10(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469326

ABSTRACT

Resveratrol (RV) is a natural non-flavonoid polyphenol and phytoalexin produced by a number of plants such as peanuts, grapes, red wine and berries. Numerous in vitro studies have shown promising results of resveratrol usage as antioxidant, antiplatelet or anti-inflammatory agent. Beneficial effects of resveratrol activity probably result from its ability to purify the body from ROS (reactive oxygen species), inhibition of COX (cyclooxygenase) and activation of many anti-inflammatory pathways. Administration of the polyphenol has a potential to slow down the development of CVD (cardiovascular disease) by influencing on certain risk factors such as development of diabetes or atherosclerosis. Resveratrol induced an increase in Sirtuin-1 level, which by disrupting the TLR4/NF-κB/STAT signal cascade (toll-like receptor 4/nuclear factor κ-light-chain enhancer of activated B cells/signal transducer and activator of transcription) reduces production of cytokines in activated microglia. Resveratrol caused an attenuation of macrophage/mast cell-derived pro-inflammatory factors such as PAF (platelet-activating factor), TNF-α (tumour necrosis factor-α and histamine. Endothelial and anti-oxidative effect of resveratrol may contribute to better outcomes in stroke management. By increasing BDNF (brain-derived neurotrophic factor) serum concentration and inducing NOS-3 (nitric oxide synthase-3) activity resveratrol may have possible therapeutical effects on cognitive impairments and dementias especially in those characterized by defective cerebrovascular blood flow.


Subject(s)
Cardiovascular Diseases/drug therapy , Resveratrol/pharmacology , Animals , Cerebrovascular Circulation/drug effects , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cytokines/blood , Diabetes Mellitus/drug therapy , Disease Models, Animal , Humans , Inflammation/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
11.
Biomed Res Int ; 2018: 6091014, 2018.
Article in English | MEDLINE | ID: mdl-30186862

ABSTRACT

Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF-α (tumor necrosis factor-α), IL-6 (interleukin-6), IL-17 (interleukin-17), and CD-163 (cluster of differentiation 163), and contributed to an increase in levels of anti-inflammatory factors: IL-10 (interleukin-10) and TGF-ß (transforming growth factor ß). Moreover, sitagliptin demonstrated antioxidative and antiapoptotic properties by modifying glutamate and glutathione levels within the region of hippocampus in mice. It has been observed that sitagliptin decreases accumulation of ß-amyloid within encephalon structures in experimental models of Alzheimer's dementia. This effect may be connected with SDF-1α (stromal cell-derived factor 1α) concentration. Administration of sitagliptin caused a significant improvement in MMSE (Mini-Mental State Examination) tests used for assessment of dementias. The paper presents potential mechanisms of sitagliptin activity in conditions connected with neuroinflammation with special emphasis on Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Hypoglycemic Agents/pharmacology , Inflammation , Sitagliptin Phosphate/pharmacology , Alzheimer Disease/immunology , Animals , Blood Glucose , Cytokines/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Glucagon-Like Peptide 1 , Incretins , Mice
12.
Microvasc Res ; 119: 84-90, 2018 09.
Article in English | MEDLINE | ID: mdl-29738719

ABSTRACT

Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca2+ related to activation of IP3 receptors and to Rho-kinase activity.


Subject(s)
Arteries/drug effects , Calcium Signaling/drug effects , Calcium/metabolism , Endothelin-1/pharmacology , Tail/blood supply , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , rho-Associated Kinases/metabolism , Animals , Arteries/enzymology , Dose-Response Relationship, Drug , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...