Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37766038

ABSTRACT

Analysis of biomedical data can provide useful information regarding human condition and as a result-analysis of these signals has become one of the most popular diagnostic methods [...].

3.
Appl Psychophysiol Biofeedback ; 44(2): 103-115, 2019 06.
Article in English | MEDLINE | ID: mdl-30565198

ABSTRACT

The purpose of the present study was to identify the effect of acoustic neurofeedback on brain activity during consecutive stages of mental rotation of 3D objects. Given the fact that the process of mental rotation of objects is associated with desynchronisation of beta rhythm (beta ERD), it was expected that suppression in this band would be greater in the experimental group than in the controls. Thirty-three participants were randomly allocated to two groups performing the classic Shepard-Metzler mental rotation task (1971). The experimental group received auditory stimuli when the level of concentration fell below the threshold value determined separately for each participant based on the engagement index [ß/(α + Θ)]. The level of concentration in the control group was not stimulated. Compared to the controls, the experimental group was found with greater beta-band suppression recorded above the left parietal cortex during the early stage and above the right parietal cortex during the late stage of mental rotation task. At the late stage of mental rotation, only the experimental group was found with differences in beta ERD related to varied degrees of the rotation angle and the control condition (zero angles, no rotation) recorded above the right parietal cortex and the central area of cerebral cortex. The present findings suggest that acoustic feedback might improve the process of mental rotation.


Subject(s)
Acoustics , Beta Rhythm/physiology , Neurofeedback/physiology , Parietal Lobe/physiology , Adult , Cerebral Cortex , Female , Humans , Male
4.
Adv Med Sci ; 63(1): 192-198, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29175078

ABSTRACT

More profound understanding of the relationship between the burnout and the limbic system function can provide better insight into brain structures associated with the burnout syndrome. The objective of this review is to explore all evidence of limbic brain structures associated with the burnout syndrome. In total, 13 studies were selected. Four of them applied the neuroimaging technology to investigate the sizes/volumes of the limbic brain structures of burnout patients. Six other studies were to investigate the hypothalamus-pituitary-adrenal (HPA) axis of burnout patients. Based on the results of the studies on the HPA-axis and neuroimaging of the limbic brain structures, one can see great impact of the chronic occupational stress on the limbic structures in terms of HPA dysregulation, a decrease of BDNF, impaired neurogenesis and limbic structures atrophy. It can be concluded that chronic stress inhibits the feedback control pathway in the HPA axis, causes the decrease of brain-derived neurotrophic factor (BDNF), then impaired neurogenesis and eventually neuron atrophy.


Subject(s)
Burnout, Professional/pathology , Limbic System/pathology , Humans , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...