Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36833219

ABSTRACT

The vertebrate photoperiodic neuroendocrine system uses the photoperiod as a proxy to time the annual rhythms in reproduction. The thyrotropin receptor (TSHR) is a key protein in the mammalian seasonal reproduction pathway. Its abundance and function can tune sensitivity to the photoperiod. To investigate seasonal adaptation in mammals, the hinge region and the first part of the transmembrane domain of the Tshr gene were sequenced for 278 common vole (Microtus arvalis) specimens from 15 localities in Western Europe and 28 localities in Eastern Europe. Forty-nine single nucleotide polymorphisms (SNPs; twenty-two intronic and twenty-seven exonic) were found, with a weak or lack of correlation with pairwise geographical distance, latitude, longitude, and altitude. By applying a temperature threshold to the local photoperiod-temperature ellipsoid, we obtained a predicted critical photoperiod (pCPP) as a proxy for the spring onset of local primary food production (grass). The obtained pCPP explains the distribution of the genetic variation in Tshr in Western Europe through highly significant correlations with five intronic and seven exonic SNPs. The relationship between pCPP and SNPs was lacking in Eastern Europe. Thus, Tshr, which plays a pivotal role in the sensitivity of the mammalian photoperiodic neuroendocrine system, was targeted by natural selection in Western European vole populations, resulting in the optimized timing of seasonal reproduction.


Subject(s)
Arvicolinae , Photoperiod , Receptors, Thyrotropin , Animals , Arvicolinae/genetics , Arvicolinae/physiology , Genetic Variation , Mammals , Seasons , Temperature
2.
Mol Ecol ; 31(3): 993-1006, 2022 02.
Article in English | MEDLINE | ID: mdl-34775636

ABSTRACT

Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.


Subject(s)
Foxes , Genetic Variation , Animals , Bayes Theorem , Europe , Foxes/genetics , Humans , Phylogeny , Phylogeography
3.
Nat Ecol Evol ; 2(7): 1139-1145, 2018 07.
Article in English | MEDLINE | ID: mdl-29784979

ABSTRACT

Species of the Bos genus, including taurine cattle, zebu, gayal, gaur, banteng, yak, wisent and bison, have been domesticated at least four times and have been an important source of meat, milk and power for many human cultures. We sequence the genomes of gayal, gaur, banteng, wisent and bison, and provide population genomic sequencing of an additional 98 individuals. We use these data to determine the phylogeny and evolutionary history of these species and show that the threatened gayal is an independent species or subspecies. We show that there has been pronounced introgression among different members of this genus, and that it in many cases has involved genes of considerable adaptive importance. For example, genes under domestication selection in cattle (for example, MITF) were introgressed from domestic cattle to yak. Also, genes in the response-to-hypoxia pathway (for example, EGLN1, EGLN2 and HIF3a) have been introgressed from yak to Tibetan cattle, probably facilitating their adaptation to high altitude. We also validate that there is an association between the introgressed EGLN1 allele and haemoglobin and red blood cell concentration. Our results illustrate the importance of introgression as a source of adaptive variation and during domestication, and suggest that the Bos genus evolves as a complex of genetically interconnected species with shared evolutionary trajectories.


Subject(s)
Adaptation, Biological , Bison/genetics , Cattle/genetics , Domestication , Genetic Variation , Hybridization, Genetic , Animals , Biological Evolution , Genome
4.
Mol Biol Evol ; 34(3): 598-612, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28007976

ABSTRACT

Retracing complex population processes that precede extreme bottlenecks may be impossible using data from living individuals. The wisent (Bison bonasus), Europe's largest terrestrial mammal, exemplifies such a population history, having gone extinct in the wild but subsequently restored by captive breeding efforts. Using low coverage genomic data from modern and historical individuals, we investigate population processes occurring before and after this extinction. Analysis of aligned genomes supports the division of wisent into two previously recognized subspecies, but almost half of the genomic alignment contradicts this population history as a result of incomplete lineage sorting and admixture. Admixture between subspecies populations occurred prior to extinction and subsequently during the captive breeding program. Admixture with the Bos cattle lineage is also widespread but results from ancient events rather than recent hybridization with domestics. Our study demonstrates the huge potential of historical genomes for both studying evolutionary histories and for guiding conservation strategies.


Subject(s)
Bison/genetics , Extinction, Biological , Animals , Animals, Domestic/genetics , Biological Evolution , Breeding , Cattle , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Gene Flow/genetics , Genetic Variation , Genomics/methods , Hybridization, Genetic/genetics , Phylogeny , Sequence Analysis, DNA/methods
5.
PLoS One ; 11(12): e0168621, 2016.
Article in English | MEDLINE | ID: mdl-27992546

ABSTRACT

The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential 'northern glacial refugium', i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe.


Subject(s)
Arvicolinae/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Animals , Bayes Theorem , Europe , Microsatellite Repeats , Phylogeny , Phylogeography , Sequence Analysis, DNA
6.
PLoS One ; 9(8): e103949, 2014.
Article in English | MEDLINE | ID: mdl-25111840

ABSTRACT

Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole (Microtus agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south, however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate estimated here and those obtained by sampling heterochronous (ancient) DNA (including that of a congeneric species) suggest that there is little disparity between the measured genetic divergence and the population divergence that is implicit in our land-bridge calibration.


Subject(s)
Arvicolinae , Evolution, Molecular , Phylogeography , Animals , Arvicolinae/genetics , Calibration , Mitochondria/genetics , Molecular Sequence Data , Scandinavian and Nordic Countries
7.
Acta Theriol (Warsz) ; 59: 367-376, 2014.
Article in English | MEDLINE | ID: mdl-24954926

ABSTRACT

The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

8.
J Hered ; 103(3): 349-59, 2012.
Article in English | MEDLINE | ID: mdl-22496313

ABSTRACT

Variation in the major histocompatibility complex (MHC) class I of the European bison was characterized in a sample of 99 individuals using both classical cloning/Sanger sequencing and 454 pyrosequencing. Three common (frequencies: 0.348, 0.328, and 0.283) haplotypes contain 1-3 classical class I loci. A variable and difficult to estimate precisely number of nonclassical transcribed loci, pseudogenes, and/or gene fragments were also found. The presence of additional 2 rare haplotypes (frequency of 0.020 each), observed only in heterozygotes, was inferred. The overall organization of MHC I appears similar to the cattle system, but genetic variation is much lower with only 7 classical class I alleles, approximately one-tenth of the number known in cattle and a quarter known in the American bison. An extensive transspecific polymorphism was found. MHC I is in a strong linkage disequilibrium with previously studied MHC II DRB3 gene. The most likely explanation for the low variation is a drastic bottleneck at the beginning of the 20th century. Genotype frequencies conformed to Hardy-Weinberg expectations, and no signatures of selection in contemporary populations but strong signatures of historical positive selection in sequences of classical alleles were found. A quick and reliable method of MHC I genotyping was developed.


Subject(s)
Bison/genetics , Genes, MHC Class I , Genetic Variation , Animals , Europe , Exons , Haplotypes , Linkage Disequilibrium , Phylogeny , Polymorphism, Genetic , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA
9.
Biol Direct ; 4: 48; discussion 48, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19995416

ABSTRACT

A total of 929 polymorphic SNPs in EB (out of 54, 000 SNPs screened using a BovineSNP50 Illumina Genotyping BeadChip), and 1, 524 and 1, 403 polymorphic SNPs in WB and PB, respectively, were analysed. EB, WB and PB have all undergone recent drastic reductions in population size. Accordingly, they exhibited extremely depauperate genomes, deviations from genetic equilibrium and a genome organization consisting of a mosaic of haplotype blocks: regions with low haplotype diversity and high levels of linkage disequilibrium. No evidence for positive or stabilizing selection was found in EB, WB and PB, likely reflecting drift overwhelming selection. We suggest that utilization of genome-wide screening technologies, followed by utilization of less expensive techniques (e.g. VeraCode and Fluidigm EP1), holds large potential for genetic monitoring of populations. Additionally, these techniques will allow radical improvements of breeding practices in captive or managed populations, otherwise hampered by the limited availability of polymorphic markers. This result in improved possibilities for 1) estimating genetic relationships among individuals and 2) designing breeding strategies which attempt to preserve or reduce polymorphism in ecologically relevant genes and/or entire blocks.


Subject(s)
Bison/genetics , Genetic Variation , Genomics/methods , Americas , Animals , Europe , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics
10.
Mol Ecol Resour ; 9(1): 140-3, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21564584

ABSTRACT

We tested 96 microsatellites and 10 single nucleotide polymorphisms for their allelic distribution in two subspecies of the house mouse, Mus musculus musculus and M. m. domesticus. Sixty-two microsatellites discriminated strain-specific differences among nine wild-derived 'musculus' and 'domesticus' and three 'classical' laboratory strains. For efficient genotyping, we optimized multiplex conditions using five microsatellites per polymerase chain reaction. All 10 single nucleotide polymorphisms were also optimized for simultaneous analysis in one reaction using SNaPshot multiplex. The uniform distribution of markers on autosomes and on the X chromosome makes these panels potentially useful tools for quantitative trait loci mapping of wild house mice.

11.
Evolution ; 60(9): 1925-35, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17089976

ABSTRACT

Population density cycles influence phenotypic evolution through both density-dependent selection during periods of high density and through enhanced genetic drift during periods of low density. We investigated the response of different phenotypic traits to the same density cycles in a population of the yellow-necked mouse, Apodemus flavicollis, from Bialowieza National Park in Poland. We examined nonmetric skull traits, skull and mandible size, skull and mandible shape, and transferrin allele frequencies. We found that all of the traits changed significantly over the seven-year study period. The greatest changes in nonmetric traits and mandible size occurred during periods of increasing density, and the magnitude of changes in skull and mandible shape was correlated with the magnitude of density changes. Frequencies of transferrin alleles changed the most when population density was in decline. Changes among the five phenotypic traits were generally uncorrelated with one another, except for skull and mandible shape. Nonmetric traits were selectively neutral when assessed with Q(ST)/F(ST) analysis, whereas mandible size, mandible shape, and skull shape showed evidence of fairly strong selection. Selection on skull size was weak or nonexistent. We discuss how different assumptions about the genetic components of variance affect Q(ST) estimates when phenotypic variances are substituted for genetic ones. We also found that change in mandible size, mandible shape, skull size, and skull shape were greater than expected under a neutral model given reasonable assumptions about heritability and effective population size.


Subject(s)
Biological Evolution , Murinae/anatomy & histology , Selection, Genetic , Skull/anatomy & histology , Animals , Mandible/anatomy & histology , Murinae/genetics , Poland , Population Dynamics , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...