Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Genome Biol ; 24(1): 152, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37370129

ABSTRACT

BACKGROUND: Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS: We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS: Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.


Subject(s)
Blood Platelets , Hematopoiesis , Mice , Animals , Cell Lineage , Kinetics , Hematopoietic Stem Cells , Clone Cells , Cell Differentiation
3.
Blood ; 141(25): 3065-3077, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36888932

ABSTRACT

Mitochondrial damage-associated molecular patterns (mtDAMPs) include proteins, lipids, metabolites, and DNA and have various context-specific immunoregulatory functions. Cell-free mitochondrial DNA (mtDNA) is recognized via pattern recognition receptors and is a potent activator of the innate immune system. Cell-free mtDNA is elevated in the circulation of trauma patients and patients with cancer; however, the functional consequences of elevated mtDNA are largely undefined. Multiple myeloma (MM) relies upon cellular interactions within the bone marrow (BM) microenvironment for survival and progression. Here, using in vivo models, we describe the role of MM cell-derived mtDAMPs in the protumoral BM microenvironment and the mechanism and functional consequence of mtDAMPs in myeloma disease progression. Initially, we identified elevated levels of mtDNA in the peripheral blood serum of patients with MM compared with those of healthy controls. Using the MM1S cells engrafted into nonobese diabetic severe combined immunodeficient gamma mice, we established that elevated mtDNA was derived from MM cells. We further show that BM macrophages sense and respond to mtDAMPs through the stimulator of interferon genes (STING) pathway, and inhibition of this pathway reduces MM tumor burden in the KaLwRij-5TGM1 mouse model. Moreover, we found that MM-derived mtDAMPs induced upregulation of chemokine signatures in BM macrophages, and inhibition of this signature resulted in egress of MM cells from the BM. Here, we demonstrate that malignant plasma cells release mtDNA, a form of mtDAMPs, into the myeloma BM microenvironment, which in turn activates macrophages via STING signaling. We establish the functional role of these mtDAMP-activated macrophages in promoting disease progression and retaining MM cells in the protumoral BM microenvironment.


Subject(s)
Multiple Myeloma , Animals , Mice , Multiple Myeloma/metabolism , Plasma Cells/pathology , Macrophages/metabolism , DNA, Mitochondrial/genetics , Disease Progression , Tumor Microenvironment
4.
Blood Adv ; 7(2): 256-268, 2023 01 24.
Article in English | MEDLINE | ID: mdl-35622970

ABSTRACT

Rapid and effective leukocyte response to infection is a fundamental function of the bone marrow (BM). However, with increasing age, this response becomes impaired, resulting in an increased burden of infectious diseases. Here, we investigate how aging changes the metabolism and function of hematopoietic progenitor cells (HPCs) and the impact of the BM niche on this phenotype. We found that, in response to lipopolysaccharide-induced stress, HPC mitochondrial function is impaired, and there is a failure to upregulate the TCA cycle in progenitor populations in aged animals compared with young animals. Furthermore, aged mesenchymal stromal cells (MSCs) of the BM niche, but not HPCs, exhibit a senescent phenotype, and selective depletion of senescent cells from the BM niche, as well as treatment with the senolytic drug ABT-263, improves mitochondrial function of HPCs when stressed with lipopolysaccharide. In summary, age-related HPC metabolic dysfunction occurs indirectly as a "bystander phenomenon" in the aging BM niche and can be restored by targeting senescent MSCs.


Subject(s)
Bone Marrow , Lipopolysaccharides , Animals , Lipopolysaccharides/pharmacology , Hematopoietic Stem Cells/metabolism , Bone Marrow Cells , Aging , Cyclin-Dependent Kinase Inhibitor p16/metabolism
5.
Front Immunol ; 13: 1003006, 2022.
Article in English | MEDLINE | ID: mdl-36211413

ABSTRACT

Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.


Subject(s)
Fatty Acids, Nonesterified , Hematopoiesis , Bone Marrow , Carbohydrates , Fatty Acids, Nonesterified/metabolism , Hematopoietic Stem Cells/metabolism
6.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34990402

ABSTRACT

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation, and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to and growth of solid tumors. Here, we investigated the role of macrophage LC3-associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages (BMMs) increased AML growth in vivo. We show that LAP is the predominate method of BMM phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to the accumulation of apoptotic cells (ACs) and apoptotic bodies (ABs), resulting in accelerated leukemia growth. Mechanistically, LAP of AML-derived ABs by BMMs resulted in stimulator of IFN genes (STING) pathway activation. We found that AML-derived mitochondrial damage-associated molecular patterns were processed by BMMs via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML-derived ABs showed that it was this mtDNA that was responsible for the induction of STING signaling in BMMs. Phenotypically, we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Bone Marrow/metabolism , DNA, Mitochondrial/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Macrophages/metabolism , Phagocytosis , Tumor Microenvironment
7.
Proc Natl Acad Sci U S A ; 116(49): 24610-24619, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31727843

ABSTRACT

Hematopoietic stem cells (HSCs) undergo rapid expansion in response to stress stimuli. Here we investigate the bioenergetic processes which facilitate the HSC expansion in response to infection. We find that infection by Gram-negative bacteria drives an increase in mitochondrial mass in mammalian HSCs, which results in a metabolic transition from glycolysis toward oxidative phosphorylation. The initial increase in mitochondrial mass occurs as a result of mitochondrial transfer from the bone marrow stromal cells (BMSCs) to HSCs through a reactive oxygen species (ROS)-dependent mechanism. Mechanistically, ROS-induced oxidative stress regulates the opening of connexin channels in a system mediated by phosphoinositide 3-kinase (PI3K) activation, which allows the mitochondria to transfer from BMSCs into HSCs. Moreover, mitochondria transfer from BMSCs into HSCs, in the response to bacterial infection, occurs before the HSCs activate their own transcriptional program for mitochondrial biogenesis. Our discovery demonstrates that mitochondrial transfer from the bone marrow microenvironment to HSCs is an early physiologic event in the mammalian response to acute bacterial infection and results in bioenergetic changes which underpin emergency granulopoiesis.


Subject(s)
Hematopoietic Stem Cells/metabolism , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Salmonella Infections/pathology , Stromal Cells/metabolism , Animals , Bone Marrow Cells , Enzyme Activation , Fetal Blood , Glycolysis , Humans , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred NOD , Mice, Knockout , Salmonella Infections/metabolism , Salmonella typhimurium , Stromal Cells/cytology
8.
Sci Rep ; 9(1): 4785, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886165

ABSTRACT

Expansion of hematopoietic stem cells (HSCs) is a 'holy grail' of regenerative medicine, as successful stem cell transplantations depend on the number and quality of infused HSCs. Although many attempts have been pursued to either chemically or genetically increase HSC numbers, neither clonal analysis of these expanded cells nor their ability to support mature blood lineages has been demonstrated. Here we show that miR-125a, at the single cell level, can expand murine long-term repopulating HSCs. In addition, miR-125a increases clone longevity, clone size and clonal contribution to hematopoiesis. Unexpectedly, we found that miR-125a expanded HSCs clones were highly homogenously distributed across multiple anatomical sites. Interestingly, these miR-125a overexpressing cells had enhanced mobility and were more frequently detected in the spleen. Our study reveals a novel, cell-intrinsically controlled mechanism by which HSC migration is regulated.


Subject(s)
Cell Movement , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Cells, Cultured , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Spleen/cytology
9.
Cell Stem Cell ; 19(3): 383-96, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27424784

ABSTRACT

Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear. Here, we show that ectopic expression of a single microRNA (miRNA), miR-125a, in purified murine and human multipotent progenitors (MPPs) resulted in increased self-renewal and robust long-term multi-lineage repopulation in transplanted recipient mice. Using quantitative proteomics and western blot analysis, we identified a restricted set of miR-125a targets involved in conferring long-term repopulating capacity to MPPs in humans and mice. Our findings offer the innovative potential to use MPPs with enhanced self-renewal activity to augment limited sources of HSCs to improve clinical protocols.


Subject(s)
Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , MicroRNAs/metabolism , ADP-ribosyl Cyclase 1/metabolism , Animals , Antigens, CD34/metabolism , Cell Proliferation , Cell Self Renewal/genetics , Gene Regulatory Networks , Hematopoietic Stem Cell Transplantation , Humans , Isotope Labeling , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Models, Biological , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/transplantation , Reproducibility of Results , Time Factors
10.
Exp Cell Res ; 329(2): 234-8, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25192911

ABSTRACT

miRNAs have been implicated in all stages of hematopoiesis including maintenance of self-renewal of hematopoietic stem cells (HSCs) and differentiation into mature blood cells. Regulation by miRNAs is markedly intertwined with transcription factors. In this review, we highlight miRNAs shown to be important for HSC maintenance and lineage differentiation with focus on their interaction with transcription factors. We also pay attention to the diverse modes of miRNA regulation.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , MicroRNAs/genetics , Animals , Humans
11.
Exp Hematol ; 42(10): 909-18.e1, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092555

ABSTRACT

MicroRNAs (miRNAs) are crucial for proper functioning of hematopoietic stem and progenitor cells (HSPCs). Members of the miRNA-125 family (consisting of miR-125a, miR-125b1, and miR-125b2) are known to confer a proliferative advantage on cells upon overexpression, to decrease the rate of apoptosis by targeting proapoptotic genes, and to promote differentiation toward the myeloid lineage in mice. However, many distinct biological effects of the three miR-125 species have been reported as well. In the current study, we set out to assess whether the three miRNA-125s that carry identical seed sequences could be functionally different. Our data show that overexpression of each of the three miR-125 family members preserves HSPCs in a primitive state in vitro, results in a competitive advantage upon serial transplantation, and promotes skewing toward the myeloid lineage. All miR-125 family members decreased the pool of phenotypically defined Lin(-)Sca(+)Kit(+)CD48(-)CD150(+) long-term hematopoietic stem cells, simultaneously increasing the self-renewal activity upon secondary transplantation. The downregulation of miR-125s in hematopoietic stem cells abolishes these effects and impairs long-term contribution to blood cell production. The introduction of a point mutation within the miRNA-125 seed sequence abolishes all abovementioned effects and leads to the restoration of normal hematopoiesis. Our results show that all miR-125 family members are similar in function, they likely operate in a seed-sequence-dependent manner, and they induce a highly comparable hematopoietic phenotype.


Subject(s)
Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , MicroRNAs/physiology , Animals , Bone Marrow Transplantation , Cell Division , Cell Lineage , Cells, Cultured , Colony-Forming Units Assay , Female , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , MicroRNAs/genetics , Mutagenesis, Site-Directed , Myelopoiesis/genetics , Oligonucleotides/pharmacology , Point Mutation , Radiation Chimera , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship
12.
Blood ; 117(7): 2227-36, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21088135

ABSTRACT

The ubiquitin-editing enzyme A20/TNFAIP3 is essential for controlling signals inducing the activation of nuclear factor-κB transcription factors. Polymorphisms and mutations in the TNFAIP3 gene are linked to various human autoimmune conditions, and inactivation of A20 is a frequent event in human B-cell lymphomas characterized by constitutive nuclear factor-κB activity. Through B cell-specific ablation in the mouse, we show here that A20 is required for the normal differentiation of the marginal zone B and B1 cell subsets. However, loss of A20 in B cells lowers their activation threshold and enhances proliferation and survival in a gene-dose-dependent fashion. Through the expression of proinflammatory cytokines, most notably interleukin-6, A20-deficient B cells trigger a progressive inflammatory reaction in naive mice characterized by the expansion of myeloid cells, effector-type T cells, and regulatory T cells. This culminates in old mice in an autoimmune syndrome characterized by splenomegaly, plasma cell hyperplasia, and the presence of class-switched, tissue-specific autoantibodies.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/immunology , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/immunology , Aging/immunology , Aging/pathology , Animals , Autoimmunity , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/pathology , Cell Differentiation , Cysteine Endopeptidases/genetics , Gene Dosage , Humans , In Vitro Techniques , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Interleukin-6/biosynthesis , Intracellular Signaling Peptides and Proteins/genetics , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/pathology , NF-kappa B/metabolism , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology
13.
Tumour Biol ; 31(6): 559-67, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20589490

ABSTRACT

Squamous cell carcinoma antigen (SCCA) is expressed in normal squamous cell epithelia and in squamous cell carcinomas (SCC). Two nearly identical genes encode the inhibitory serpins SCCA1 (SERPINB3) and SCCA2 (SERPINB4). Serum levels of SCCA are elevated in patients with benign skin diseases and in patients with SCC. SCCA, used for the monitoring of SCC patients, presents no satisfactory diagnostic specificity. As we have shown previously, the reverse transcription polymerase chain reaction (RT-PCR)-based SCCA messenger RNA (mRNA) testing aimed at detecting disseminated cancer cells may be hampered by the false-positive results due to SCCA expression in activated peripheral blood mononuclear cells (PBMC). The aim of this study was to assess the expression of SCCA at mRNA and protein levels in cultured normal PBMC, compared to that in vulvar SCC (VSCC) samples. High SCCA concentrations were found in vulvar tumours and in metastatic lymph nodes, while negative inguinal lymph nodes from the same patients often presented significantly less SCCA. In normal activated PBMC, the level of SCCA protein was the lowest. At the mRNA level SCCA was detectable in normal PBMC even in cultures with no mitogen stimulation, but only by the nested RT-PCR, contrary to VSCC samples found to be SCCA positive already in one-step PCR. Both SCCA1 and SCCA2 transcripts were present in cultured PBMC; SCCA1 was expressed at a higher level than SCCA2. In conclusion, both SCCA forms are detectable in normal PBMC cultured in vitro. SCCA expression level in normal PBMC is much lower than in the squamous epithelium-derived cells. In VSCC, in addition to tumour itself, metastatic lymph nodes seem also to be a potential source of serum SCCA.


Subject(s)
Antigens, Neoplasm/metabolism , Carcinoma, Squamous Cell/metabolism , Leukocytes, Mononuclear/metabolism , Serpins/metabolism , Vulvar Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cells, Cultured , Female , Humans , Leukocytes, Mononuclear/cytology , RNA, Messenger/metabolism , Vulvar Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...