Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442714

ABSTRACT

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Subject(s)
Cerebral Cortex , Glucocorticoids , Neurogenesis , Promyelocytic Leukemia Zinc Finger Protein , Neurogenesis/drug effects , Neurogenesis/physiology , Humans , Animals , Mice , Glucocorticoids/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Female , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Pregnancy , Neurons/metabolism , Neurons/drug effects , Organoids/drug effects , Organoids/metabolism , Gene Expression Regulation, Developmental/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Male
2.
Proc Natl Acad Sci U S A ; 120(49): e2305773120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011552

ABSTRACT

Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.


Subject(s)
Glucocorticoids , Mental Disorders , Humans , High-Throughput Screening Assays , Regulatory Sequences, Nucleic Acid , Quantitative Trait Loci , Mental Disorders/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Predisposition to Disease
3.
J Mol Endocrinol ; 54(1): 51-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25573902

ABSTRACT

TMEFF2 is a transmembrane protein with unknown function, containing an altered epidermal growth factor (EGF)-like motif, two follistatin-like domains, and a cytosolic tail with a putative G-protein-activating motif. TMEFF2 is predominantly expressed in brain and prostate and has been implicated in cell signaling, neuronal cell survival, and tumor suppression. We found that expression of TMEFF2 in pituitary corticotrope cells inhibits the effects of corticotropin-releasing hormone (CRH) on the production of intracellular cAMP, and CREB, and transcription of Pomc. Regulation of the activity of CRH by TMEFF2 requires neither the cytoplasmic tail nor the EGF domain, while deletion of the follistatin modules abolishes the inhibitory function of TMEFF2. Moreover, a soluble secreted protein containing the complete extracellular domain is sufficient for inhibition of CRH signaling. TMEFF2-induced inhibition depends on serum components. Furthermore, TMEFF2 regulates the non-canonical activin/BMP4 signaling, PI3K, and Ras/ERK1/2 pathways. Thus, TMEFF2 inhibits the CRH signaling pathway and the PI3K/AKT and Ras/ERK1/2 pathways, contributing to a significant inhibition of transcription of Pomc. We found that expression of TMEFF2 in human Cushing's adenoma is reduced when compared with normal human pituitary, which may indicate that TMEFF2 acts as a tumor suppressor in these adenomas. Furthermore, the overexpression of TMEFF2 decreased proliferation of corticotrope cells. Our results indicate a potential therapeutic use of TMEFF2 or factors that stimulate the activity of TMEFF2 for the treatment of corticotrope tumors in order to reduce their secretion of ACTH and proliferation.


Subject(s)
Corticotropin-Releasing Hormone/physiology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Adrenocorticotropic Hormone/metabolism , Animals , Bone Morphogenetic Protein 4/physiology , Cell Line, Tumor , Cell Proliferation , Cyclic AMP/metabolism , Humans , MAP Kinase Signaling System , Mice , Phosphatidylinositol 3-Kinases/metabolism , Rats , Second Messenger Systems , Transcription, Genetic
4.
J Endocrinol ; 199(2): 177-89, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18715881

ABSTRACT

Interferon-gamma (IFNG) is a cytokine that exerts potent antiproliferative and tumoricidal effects in a variety of cancers. Moreover, IFNG modulates normal pituitary hormone secretion, and was shown to inhibit the expression of the ACTH precursor POMC in murine ACTH-secreting AtT-2010/21/2008 tumor cells. We have studied the functional role of IFNG on pituitary tumor cells, focusing on the involvement of IFNG in the molecular events leading to the control of POMC transcriptional repression. Herein, it is shown that IFNG inhibits AtT-20 tumor cell proliferation without inducing apoptosis. Unexpectedly, an activated janus kinases-signal transducer and activator of transcription (JAK-STAT1) cascade is required for IFNG inhibitory action on POMC promoter activity. Factor-kappa B (NF-kappaB) is necessary for the inhibitory action of IFNG on Pomc transcription, since loss of NF-kappaB activity with IkappaB super-repressor abolishes this effect. In addition, 1 and 2 IFNG receptor immunoreactivity was detected in human corticotropinoma cells. Interestingly, IFNG inhibits ACTH production from these cells in primary cell culture, without affecting basal ACTH biosynthesis in normal non-tumoral pituitary cells. In conclusion, our data show for the first time that POMC transcription can be negatively regulated by a JAK-STAT1 and NF-kappaB-dependent pathway.


Subject(s)
Adrenocorticotropic Hormone/biosynthesis , Cell Proliferation/drug effects , Interferon-gamma/pharmacology , Janus Kinases/metabolism , NF-kappa B/metabolism , Pituitary Neoplasms/metabolism , STAT1 Transcription Factor/metabolism , Animals , Blotting, Western , Humans , Mice , Pituitary Neoplasms/drug therapy , Pro-Opiomelanocortin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Transcription, Genetic/drug effects
5.
Neuron ; 51(4): 455-66, 2006 Aug 17.
Article in English | MEDLINE | ID: mdl-16908411

ABSTRACT

Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.


Subject(s)
Cannabinoid Receptor Modulators/physiology , Endocannabinoids , Epilepsy/pathology , Epilepsy/physiopathology , Hippocampus/pathology , Nerve Net/pathology , Analysis of Variance , Animals , Behavior, Animal/drug effects , Benzoxazines , Calcium Channel Blockers/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Epilepsy/chemically induced , Epilepsy/genetics , Gene Expression/physiology , Glutamic Acid/genetics , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/physiopathology , Kainic Acid/toxicity , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Membrane Potentials/radiation effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Morpholines/pharmacology , Naphthalenes/pharmacology , Nerve Net/drug effects , Nerve Net/physiopathology , Pyramidal Cells/physiology , Pyramidal Cells/radiation effects , Receptor, Cannabinoid, CB1/deficiency , Reverse Transcriptase Polymerase Chain Reaction/methods , Vesicular Glutamate Transport Protein 1/metabolism , gamma-Aminobutyric Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...