Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 200: 114338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789063

ABSTRACT

Ionizable lipids are a class of pharmaceutical excipients with a main application in lipid nanoparticles for nucleic acid delivery. New ionizable lipids are needed to tune characteristics of lipid-based nucleic acid delivery systems, e.g. stability, nucleic acid loading capacity and binding strength, as well as bio-distribution. Herein, we present the synthesis of three novel ionizable lipids as putative excipients for lipid-based nucleic acid delivery systems. Langmuir monolayer experiments with classical surface pressure/area isotherm evaluation were used to understand the self-assembly behavior of the lipids. Additional experiments with surface sensitive techniques, namely grazing incidence x-ray scattering and infrared reflection-absorption spectroscopy (IRRAS), were performed to understand structural characteristics of lipid associates. The latter technique was also used to investigate the nucleic acid binding process between DNA and the ionizable lipids. Finally, first transfection experiments with the novel lipids formulated as cationic liposomes were performed providing first efficacy data. Although the alkyl chain pattern was comparable for all three ionizable lipids, the results demonstrated that with increasing head-group size the DNA binding capacity changed and the alkyl chain fluidity was increased. The lipid with the lowest phase transition temperature and the smallest packing parameter showed the highest DNA transfer efficiency.


Subject(s)
DNA , Fatty Acids , Lipids , Lipids/chemistry , Fatty Acids/chemistry , DNA/chemistry , Liposomes/chemistry , Excipients/chemistry , Nanoparticles/chemistry , Surface Properties
2.
Langmuir ; 40(5): 2646-2655, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38258382

ABSTRACT

The envelope (E) protein of SARS-CoV-2 participates in virion encapsulation and budding at the membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC). The positively curved membrane topology required to fit an 80 nm viral particle is energetically unfavorable; therefore, viral proteins must facilitate ERGIC membrane curvature alteration. To study the possible role of the E protein in this mechanism, we examined the structural modification of the host lipid membrane by the SARS-CoV-2 E protein using synchrotron-based X-ray methods. Our reflectometry results on solid-supported planar bilayers show that E protein markedly condenses the surrounding lipid bilayer. For vesicles, this condensation effect differs between the two leaflets such that the membrane becomes asymmetric and increases its curvature. The formation of such a curved and condensed membrane is consistent with the requirements to stably encapsulate a viral core and supports a role for E protein in budding during SARS-CoV-2 virion assembly.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Virus Assembly , Viral Proteins , Viral Envelope Proteins/chemistry
3.
ACS Appl Bio Mater ; 6(12): 5502-5514, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38016693

ABSTRACT

Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.


Subject(s)
Curcumin , Glioblastoma , Photochemotherapy , Humans , Animals , Female , Photochemotherapy/methods , Glioblastoma/drug therapy , Glioblastoma/pathology , Curcumin/pharmacology , Curcumin/therapeutic use , Chickens , Cell Line, Tumor
4.
Adv Healthc Mater ; 12(31): e2301643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37712605

ABSTRACT

The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.


Subject(s)
Poloxamer , Printing, Three-Dimensional , RNA, Small Interfering , Delayed-Action Preparations , Hydrogels
5.
Nanoscale Adv ; 5(17): 4589-4597, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37638167

ABSTRACT

Synthetic amino lipids, already known as highly efficient gene therapy tool, are used in a novel way to create cross-linked stable one-molecule-thin films envisioned for future (bio)-materials applications. The films are prepared as Langmuir monolayers at the air/water interface and cross-linked 'in situ' via dynamic imine chemistry. The cross-linking process and the film characteristics are monitored by various surface-sensitive techniques such as grazing incidence X-ray diffraction, X-ray reflectivity, and infrared reflection-absorption spectroscopy. After transfer onto carbon grids, the cross-linked films are investigated by transmission and scanning electron microscopy. The obtained micrographs display mechanically self-supported nanosheets with area dimensions over several micrometers and, thus, an undeniable visual proof of successful cross-linking. The cross-linking process at the air/water interface allows to obtain Janus-faced sheets with a hydrophobic side characterized by aliphatic alkyl chains and a hydrophilic side characterized by nucleophilic groups like amines, hydroxyl groups and imine.

6.
Adv Healthc Mater ; 12(5): e2201978, 2023 02.
Article in English | MEDLINE | ID: mdl-36377486

ABSTRACT

A gene-activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin-film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer-by-layer assembly. For further functionalization, DNA/lipid-nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin-film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence-labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene-functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues.


Subject(s)
Chondroitin Sulfates , Osteogenesis , Polyelectrolytes , Cell Differentiation , Collagen , Collagen Type I/genetics , Gene Transfer Techniques , DNA/metabolism , Extracellular Matrix/metabolism
7.
Small Methods ; 6(12): e2201001, 2022 12.
Article in English | MEDLINE | ID: mdl-36284470

ABSTRACT

RNA interference opened new approaches for disease treatment but safe and efficient cell delivery remains a bottleneck. Extracellular vesicles (EVs) are known to naturally shuttle RNA. Due to their potent cell internalization and low-cost scalability, milk-derived EVs in particular are considered promising RNA delivery systems. However, low drug loading currently impedes their use. Here, innovative exogenous loading strategies for small interfering RNA (siRNA) are explored and systematically compared regarding encapsulation efficiency, loading capacity, and loading concentration. Firstly, siRNA is pre-accumulated in liposomes or stabilized calcium phosphate nanoparticles (CaP-NP). The selected systems, which exhibited neutral or negative zeta potentials, are then applied for EV loading. Secondly, EVs are concentrated and applied to protocols known for liposome loading: dehydration-rehydration of vesicles, based on freeze-drying, and mixing by dual asymmetric centrifugation (DAC) after ultracentrifugation. Additionally, DAC after EV ultracentrifugation is combined with CaP-NP leading to a synergistic loading performance. The balance between energy input for siRNA loading and EV integrity is evaluated by monitoring the EV size, marker proteins, and morphology. For the EV-based siRNA formulation via DAC plus CaP-NP, EV properties are sufficiently maintained to protect the siRNA from degradation and deliver cell-death siRNA dose-dependently in Caco-2 cells.


Subject(s)
Extracellular Vesicles , Nanoparticles , Humans , RNA, Small Interfering/genetics , Caco-2 Cells , Extracellular Vesicles/metabolism , Liposomes/metabolism
8.
Small ; 18(18): e2107768, 2022 05.
Article in English | MEDLINE | ID: mdl-35355412

ABSTRACT

Formulations based on ionizable amino-lipids have been put into focus as nucleic acid delivery systems. Recently, the in vitro efficacy of the lipid formulation OH4:DOPE has been explored. However, in vitro performance of nanomedicines cannot correctly predict in vivo efficacy, thereby considerably limiting pre-clinical translation. This is further exacerbated by limited access to mammalian models. The present work proposes to close this gap by investigating in vivo nucleic acid delivery within simpler models, but which still offers physiologically complex environments and also adheres to the 3R guidelines (replace/reduce/refine) to improve animal experiments. The efficacy of OH4:DOPE as a delivery system for nucleic acids is demonstrated using in vivo approaches. It is shown that the formulation is able to transfect complex tissues using the chicken chorioallantoic membrane model. The efficacy of DNA and mRNA lipoplexes is tested extensively in the zebra fish (Danio rerio) embryo which allows the screening of biodistribution and transfection efficiency. Effective transfection of blood vessel endothelial cells is seen, especially in the endocardium. Both model systems allow an efficacy screening according to the 3R guidelines bypassing the in vitro-in vivo gap. Pilot studies in mice are performed to correlate the efficacy of in vivo transfection.


Subject(s)
Nucleic Acids , Animals , Endothelial Cells , Lipids , Liposomes , Mammals , Mice , Nanostructures , Peptides , Tissue Distribution , Transfection
9.
Pharmaceutics ; 14(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35335924

ABSTRACT

The local release of complexed siRNA from biomaterials opens precisely targeted therapeutic options. In this study, complexed siRNA was loaded to gelatin microparticles cross-linked (cGM) with an anhydride-containing oligomer (oPNMA). We aggregated these siRNA-loaded cGM with human mesenchymal stem cells (hMSC) to microtissues and stimulated them with osteogenic supplements. An efficient knockdown of chordin, a BMP-2 antagonist, caused a remarkably increased alkaline phosphatase (ALP) activity in the microtissues. cGM, as a component of microtissues, mineralized in a differentiation medium within 8-9 days, both in the presence and in the absence of cells. In order to investigate the effects of our pre-differentiated and chordin-silenced microtissues on bone homeostasis, we simulated in vivo conditions in an unstimulated co-culture system of hMSC and human peripheral blood mononuclear cells (hPBMC). We found enhanced ALP activity and osteoprotegerin (OPG) secretion in the model system compared to control microtissues. Our results suggest osteoanabolic effects of pre-differentiated and chordin-silenced microtissues.

10.
Pharmaceutics ; 14(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35214058

ABSTRACT

Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer's high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.

11.
Mater Today Bio ; 13: 100190, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34988418

ABSTRACT

The aim of this study was the evaluation of cross-linked gelatin microparticles (cGM) as substrates for osteogenic cell culture to assemble 3D microtissues and their use as delivery system for siRNA to cells in these assemblies. In a 2D transwell cultivation system, we found that cGM are capable to accumulate calcium ions from the surrounding medium. Such a separation of cGM and SaOS-2 â€‹cells consequently led to a suppressed matrix mineral formation in the SaOS-2 culture on the well bottom of the transwell system. Thus, we decided to use cGM as component in 3D microtissues and get a close contact between calcium ion accumulating microparticles and cells to improve matrix mineralization. Gelatin microparticles were cross-linked with a N,N-diethylethylenediamine-derivatized (DEED) maleic anhydride (MA) containing oligo (pentaerythritol diacrylate monostearate-co-N-isopropylacrylamide-co-MA) (oPNMA) and aggregated with SaOS-2 or human mesenchymal stem cells (hMSC) to microtissue spheroids. We systematically varied the content of cGM in microtissues and observed cell differentiation and tissue formation. Microtissues were characterized by gene expression, ALP activity and matrix mineralization. Mineralization was detectable in microtissues with SaOS-2 â€‹cells after 7 days and with hMSC after 24-28 days in osteogenic culture. When we transfected hMSC via cGM loaded with Lipofectamine complexed chordin siRNA, we found increased ALP activity and accelerated mineral formation in microtissues in presence of BMP-2. As a model for positive paracrine effects that indicate promising in vivo effects of these microtissues, we incubated pre-differentiated microtissues with freshly seeded hMSC monolayers and found improved mineral formation all over the well in the co-culture model. These findings may support the concept of microtissues from hMSC and siRNA-loaded cGM for bone regeneration.

12.
Mater Sci Eng C Mater Biol Appl ; 131: 112516, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857295

ABSTRACT

Biomimetic surface coatings can be combined with conventional implants to mimic the extracellular matrix (ECM) of the surrounding tissue to make them more biocompatible. Layer-by-layer technique (LbL) can be used for making surface coatings by alternating adsorption of polyanions and polycations from aqueous solutions without need of chemical reactions. Here, polyelectrolyte multilayer (PEM) systems is made of hyaluronic acid (HA) as polyanion and Collagen I (Col) as polycation to mimic the ECM of connective tissue. The PEM are combined with dexamethasone (Dex)-loaded liposomes to achieve a local delivery and protection of this drug for stimulation of osteo- and chondrogenic differentiation of multipotent stem cells. The liposomes possess a positive surface charge that is required for immobilization on the PEM. The surface properties of PEM system show a positive zeta potential after liposome adsorption and a decrease in wettability, both promoting cell adhesion and spreading of C3H10T1/2 multipotent embryonic mouse fibroblasts. Differentiation of C3H10T1/2 was more prominent on the PEM system with embedded Dex-loaded liposomes compared to the basal PEM system and the use of free Dex-loaded liposomes in the supernatant. This was evident by immunohistochemical staining and an upregulation of the expression of genes, which play a key role in osteogenesis (RunX2, ALP, Osteocalcin (OCN)) and chondrogenesis (Sox9, aggrecan (ACAN), collagen type II), determined by quantitative Real-time polymerase chain reaction (qRT-PCR) after 21 days. These findings indicate that the designed liposome-loaded PEM system have high potential for use as drug delivery systems for implant coatings that can induce bone and cartilage differentiation needed for example in osteochondral implants.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Animals , Cell Differentiation , Dexamethasone/pharmacology , Extracellular Matrix , Liposomes , Mice , Multipotent Stem Cells
13.
Pharmaceutics ; 13(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34575472

ABSTRACT

The immediate release of chemotherapeutics at the target site, along with no premature release in circulation is always challenging. The purpose of this study was to develop a stimuli responsive drug delivery system, composed of lipid supported mesoporous silica nanoparticles (MSNPs) for triggered drug release at the target site and simultaneously avoiding the premature release. MSNPs with a higher drug loading capacity and very slow release were designed so as to enhance release by FDA approved US-irradiation. Doxorubicin, as a model drug, and perfluoropentane (PFP) as a US responsive material, were entrapped in the porous structure of MSNPs. Lipid coating enhanced the cellular uptake and in addition provided a gatekeeping effect at the pore opening to reduce premature release. The mechanical and thermal effects of US induced the conversion of liquid PFP to a gaseous form that was able to rupture the lipid layer, resulting in triggered drug release. The prolonged stability profile and non-toxic behavior made them suitable candidate for the delivery of anticancer drugs. This smart system, with the abilities of better cellular uptake and higher cytotoxic effects on US-irradiation, would be a good addition to the applied side of chemotherapeutic advanced drug delivery systems.

14.
Eur J Pharm Biopharm ; 166: 61-74, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34077790

ABSTRACT

Bovine milk-derived extracellular vesicles (EVs) hold promises as oral drug delivery systems. Since EV bioavailability studies are difficult to compare, key factors regarding EV uptake and intestinal permeability remain little understood. This work aims to critically study uptake and transport properties of milk-derived EVs across the intestinal barrier in vitro by standardization approaches. Therefore, uptake properties were directly compared to liposomes in intestinal Caco-2 cells. Reliable staining results were obtained by the choice of three distinct EV labeling sites, while non-specific dye transfer and excess dye removal were carefully controlled. A novel fluorescence correction factor was implemented to account for different labeling efficiencies. Both EV and liposome uptake occurred mainly energy dependent with the neonatal Fc receptor (FcRn) providing an exclusive active pathway for EVs. Confocal microscopy revealed higher internalization of EVs whereas liposomes rather remained attached to the cell surface. Internalization could be improved when changing the liposomal formulation to resemble the EV lipid composition. In a Caco-2/HT29-MTX co-culture liposomes and EVs showed partial mucus penetration. For transport studies across Caco-2 monolayers we further established a standardized protocol considering the distinct requirements for EVs. Especially insert pore sizes were systematically compared with 3 µm inserts found obligatory. Obtained apparent permeability coefficients (Papp) reflecting the transport rate will allow for better comparison of future bioavailability testing.


Subject(s)
Drug Delivery Systems/methods , Extracellular Vesicles/metabolism , Intestinal Mucosa/metabolism , Liposomes/metabolism , Milk , Permeability , Animals , Biological Transport, Active/physiology , Caco-2 Cells , Coculture Techniques/methods , Histocompatibility Antigens Class I/metabolism , Humans , Microscopy, Confocal/methods , Receptors, Fc/metabolism
15.
Eur J Pharm Biopharm ; 165: 31-40, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33962002

ABSTRACT

The exposure of cancer cells to subtherapeutic drug concentrations results in multidrug resistance (MDR). The uniqueness of mesoporous silica nanoparticles (MSNPs) with larger surface area for higher drug loading can solve the issue by delivering higher amounts of chemotherapeutics to the cancer cells. However, premature drug release and lower biocompatibility remain challenging. Lipid coating of MSNPs at the same time, can enhance the stability and biocompatibility of nanocarriers. Furthermore, the lipid coating can reduce the systemic drug release and deliver higher amounts to the tumor site. Herein, lipid coated MSNPs were prepared by utilizing cationic liposomes and further investigations were made. Our studies have shown the higher entrapment of doxorubicin (Dox) to MSNPs due to availability of porous structure. Lipid coating could provide a barrier to sustain the release of drug along with reduced premature leakage. In addition, the biocompatibility and enhanced interaction of cationic liposomes to cell membranes resulted in better cellular uptake. Lipid coated silica nanoparticles have shown higher cellular toxicity as compared to non-lipid coated particles. The increase in cytotoxicity with time supports the hypothesis of sustained release of drug from lipid coated MSNPs. We propose the Lip-Dox-MSNPs as an effective approach to treat cancer by delivering and maintaining effective concentration of drugs to the tumor site without systemic side effects.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Neoplasms/drug therapy , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Doxorubicin/pharmacokinetics , Drug Liberation , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Liposomes , Nanoparticles/chemistry , Neoplasms/pathology , Particle Size , Porosity , Silicon Dioxide/chemistry , Surface Properties
16.
Biochim Biophys Acta Biomembr ; 1863(5): 183571, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33561475

ABSTRACT

Dipalmitoyl-3-aza-dehydroxy-lysylphosphatidylglycerol (DP3adLPG), is a chemically stable synthetic analogue of the bacterial lipid lysylphosphatidylglycerol (LPG), designed as a substitute for the notoriously labile native lipid in biophysical investigations. In Staphylococcus aureus, LPG is known to play a role in resistance to antibiotics by altering membrane charge properties in response to environmental stress, but little is known about how LPG influences other bilayer physicochemical properties or lateral organisation, through the formation of complexes with lipids such as phosphatidylglycerol (PG). In this study we have investigated the different phases formed by biomimetic mixtures of 3adLPG and PG in different thermotropic states, using neutron diffraction and electron microscopy. In a DPPG/DP3adLPG 70:30 mol% mixture, two distinct lamellar phases were observed below the lipid melting transition: Lß' 1 and Lß' 2 with respective periodicities of 82 and 62 Å. Increasing the proportion of DP3adLPG to mimic the effects of environmental stress led to the disappearance of the Lß' 1 phase and the formation of an inverse hexagonal phase. The compositions of these different phases were identified by investigating the thermotropic properties of the two mixtures, and probing their interaction with the antimicrobial peptide magainin 2 F5W. We propose that the observed polymorphism results from the preferential formation of either triplet PG-3adLPG-PG, or paired PG-3adLPG complexes, dependent upon the mixing proportions of the two lipids. The relevance of these findings to the role native LPG in S. aureus, are discussed with respect to their influence on antibiotic resistance and lateral membrane organisation.


Subject(s)
Liposomes/chemistry , Lysine/chemistry , Phosphatidylglycerols/chemistry , Staphylococcus aureus/metabolism , Calorimetry, Differential Scanning , Circular Dichroism , Cryoelectron Microscopy , Liposomes/metabolism , Lysine/metabolism , Neutron Diffraction , Phosphatidylglycerols/metabolism
17.
Pharmaceutics ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854383

ABSTRACT

One major disadvantage of nucleic acid delivery systems is the low transfection or transduction efficiency of large-sized plasmids into cells. In this communication, we demonstrate the efficient transfection of a 15.5 kb green fluorescent protein (GFP)-fused HIV-1 molecular clone with a nucleic acid delivery system prepared from the highly potent peptide-mimicking cationic lipid OH4 in a mixture with the phospholipid DOPE (co-lipid). For the transfection, liposomes were loaded using a large-sized plasmid (15.5 kb), which encodes a replication-competent HIV type 1 molecular clone that carries a Gag-internal green fluorescent protein (HIV-1 JR-FL Gag-iGFP). The particle size and charge of the generated nanocarriers with 15.5 kb were compared to those of a standardized 4.7 kb plasmid formulation. Stable, small-sized lipoplexes could be generated independently of the length of the used DNA. The transfer of fluorescently labeled pDNA-HIV1-Gag-iGFP in HEK293T cells was monitored using confocal laser scanning microscopy (cLSM). After efficient plasmid delivery, virus particles were detectable as budding structures on the plasma membrane. Moreover, we observed a randomized distribution of fluorescently labeled lipids over the plasma membrane. Obviously, a significant exchange of lipids between the drug delivery system and the cellular membranes occurs, which hints toward a fusion process. The mechanism of membrane fusion for the internalization of lipid-based drug delivery systems into cells is still a frequently discussed topic.

18.
Mater Sci Eng C Mater Biol Appl ; 115: 111116, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600717

ABSTRACT

To limit the massive cytotoxicity of chemotherapeutic agents, it is desirable to establish an appropriate subtle blend of formulation design based on a dual-responsive strategy. In this study, a combined therapeutic platform based on magnetic thermosensitive liposomes (LipTS-GD) was developed. The incorporation of chelated-gadolinium imparted magnetic properties to thermosensitive liposomes (LipTS). The application of an ultra high field magnetic resonance imaging (UHF-MRI) induced hyperthermia, thus provided an improved chemotherapeutic effect of Doxorubicin (DOX). The paramagnetic platform demonstrated thermal sensitivity over a narrow temperature range starting at 37.8 °C, hence the release of DOX from LipTS-GD can be well triggered by inducing hyperthermia using UHF-MRI application. The prepared LipTS-GD were below 200 nm in diameter and an adequate release of DOX reaching 68% was obtained after 1 h UHF-MRI exposure. Profoundly, triple-negative breast cancer (TNBC) cells that were treated with LipTS-GD and subjected thereafter to UHF-MRI exposure for 60 min showed 36% viability. Hemocompatibility studies of LipTS-GD showed a physiological coagulation time and minimal hemolytic potential. Conclusively, LipTS-GD guided local delivery of DOX to solid tumors will potentially raise the therapeutic index, thus reducing the required dose and frequency of DOX administered systemically without influencing the adjacent tissues.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Hyperthermia, Induced/methods , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Combined Modality Therapy , Doxorubicin/chemistry , Drug Compounding , Female , Humans , Liposomes , Magnetic Resonance Imaging
19.
Langmuir ; 36(17): 4808-4819, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32306733

ABSTRACT

With the intention to provide a robust and economical model that can be used for predicting particle interactions with the pulmonary surfactant, this study was aimed to find an artificial surfactant model that perfectly mimics the properties of the natural pulmonary surfactant. A surfactant model should be reproducible, robust, and able to predict interactions between the pulmonary surfactant and exogenous influences from air and the aqueous site. We compared three synthetic models with the natural bovine surfactant Alveofact. The lung conditions were simulated by spreading the surfactants at the air/aqueous interface on a Langmuir trough with movable barriers. All three artificial surfactant models showed properties very similar to that of Alveofact. Visualization of the monolayers by atomic force microscopy revealed very similar structures with domain formation. The Tanaka lipid mixture has already shown good results in vitro and in vivo in previous studies. The 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) model has large conformations in the surface pressure isotherms and showed a biomimetic exclusion plateau, indicative of an effective lung surfactant formulation. Also, the equilibrium spreading pressure was similar. DPPC-1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol (POPG) had the greatest similarities with Alveofact in the hysteresis areas. The kinetic constants of the relaxation experiments during desorption showed that the PCPG model (at 30 mN/m) had almost identical diffusion and dissolution values as Alveofact. As a proof of concept, the interaction of the models with PLGA nanoparticles showed promising results in all experiments for all the three surfactant models. The results show that the choice of components in a model play a crucial role in obtaining reproducible results. The selected models can be used for further studies as synthetic in vitro lung models.

20.
Eur J Pharm Biopharm ; 150: 50-65, 2020 May.
Article in English | MEDLINE | ID: mdl-32151728

ABSTRACT

5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC; temoporfin) is one of the most potent second-generation photosensitizers available today for the treatment of a variety of clinical disorders and has a unique capability of being activated at different wavelengths. However, due to its highly lipophilic nature, poor solubility in the aqueous media and poor bioavailability limits its application in anticancer therapies. To overcome these potential issues, we developed three different liposomal formulations with mTHPC encapsulated in hydrophobic milieu thus increasing the bioavailability of the drug. The prepared formulations were characterized in terms of hydrodynamic diameter, surface charge, encapsulation efficiency, and stability studies. The mean size of the liposomes was found to be in the nanoscale range (about 100 nm) with zeta potential ranging from -6.0 to -13.7 mV. mTHPC loaded liposomes were also evaluated for morphology using atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM). Data obtained from the hemocompatibility experiments showed that these formulations were compatible with blood showing less than 10% hemolysis and coagulation time lower than 40 s. The results obtained from the single-cell gel electrophoresis assay also demonstrated no incidence of genotoxicity. Photodynamic destruction of SK-OV-3 cells using mTHPC loaded liposomes showed a dose-response relationship upon irradiation with two different wavelength lights (blue λ = 457 nm & red λ = 652 nm). A 10-fold pronounced effect was produced when liposomal formulations were irradiated at 652 nm as compared to 457 nm. This was also evaluated by the quantitative assessment of reactive oxygen production (ROS) using fluorescence microscopy. The qualitative assessment of PDT pre- and post-irradiation was visualized using confocal laser scanning microscopy (CLSM) which demonstrated an intense localization of mTHPC liposomes in the perinuclear region. Chick chorioallantoic membrane assay (CAM) was used as an alternative in-ovo model to demonstrate the localized destruction of tumor microvasculature. Overall, the prepared nanoformulation is a biocompatible, efficient and well characterized delivery system for mTHPC for the safe and effective PDT.


Subject(s)
Carcinoma/drug therapy , Chorioallantoic Membrane/blood supply , Lipids/chemistry , Mesoporphyrins/pharmacology , Ovarian Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Carcinoma/pathology , Cell Line, Tumor , Chick Embryo , Dose-Response Relationship, Drug , Drug Compounding , Female , Humans , Liposomes , Mesoporphyrins/chemistry , Microvascular Density/drug effects , Nanoparticles , Ovarian Neoplasms/pathology , Photosensitizing Agents/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...