Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 128-129: 13-24, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23261668

ABSTRACT

Increasing frequency and intensity of flood events are major concerns in the context of climate change. In addition to the direct hydrological implications of such events, potential ecotoxicological impacts are of increasing interest. It is vital to understand mechanisms of contaminant uptake from suspended particulate matter (SPM) and related effects in aquatic biota under realistic conditions. However, little is known about these processes. Due to recent changes in climate, during summer temperatures of German rivers frequently exceed 25°C. Effects of re-suspension of sediments on biota under elevated temperature regimes are likely to differ from those under lower temperature regimes. To elucidate this differential response of aquatic vertebrates, rainbow trout were exposed to suspensions of sediment from the Rhine River that was spiked with a mixture of polycyclic aromatic hydrocarbons (PAH). The experiments were conducted under two different temperature regimes (24°C or 12°C). Physicochemical parameters, including concentration of PAHs in SPM, and biomarkers in fish (biliary PAH metabolites, 7-ethoxyresorufin O-deethylase activity, lipid peroxidation (LPO), mRNA expression of some genes and micronuclei) were measured over the course of a 12d study. Concentrations of pyrene and phenanthrene decreased over time, while no decrease was observed for chrysene and benzo[a]pyrene. The biomarker cascades, more specifically the temporal dynamics of biomarker reactions, did not only show quantitative differences (i.e. different induction intensity or rate of biomarker responses) at the two temperatures but also qualitative differences, i.e. different biomarker responses were observed. A slight significant increase of biliary metabolites in fish was observed in un-spiked sediment at 24°C. In bile of fish exposed to PAH spiked sediment concentrations of 1-hydroxypyrene and 1-hydroxyphenanthrene increased significantly during the first two days, and then decreased. At 12°C uptake of PAHs was slower and maximum metabolite concentrations in bile were less than in fish exposed at 24°C. Following a latency of two days, concentrations of PAH metabolites in bile of fish exposed at 24°C were followed by a peak in LPO. PAHs spiked into sediments under laboratory conditions were significantly more bioavailable than the PAHs that were already present in un-spiked field-collected sediments.


Subject(s)
Biomarkers/metabolism , Environmental Exposure , Floods , Geologic Sediments/chemistry , Oncorhynchus mykiss/physiology , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Survival Analysis , Temperature , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 31(5): 1053-62, 2012 May.
Article in English | MEDLINE | ID: mdl-22447245

ABSTRACT

Effect-directed analysis (EDA) can be useful in identifying and evaluating potential toxic chemicals in matrixes. Previous investigations of extracts of sediments from the upper Danube River in Germany revealed acute nonspecific and mechanism-specific toxicity as determined by several bioassays. In the present study, EDA was used to further characterize these sediments and identify groups of potentially toxic chemicals. Four extracts of sediments were subjected to a novel fractionation scheme coupled with identification of chemicals to characterize their ability to disrupt steroidogenesis or cause mutagenic and/or teratogenic effects. All four whole extracts of sediment caused significant alteration of steroidogenesis and were mutagenic as well as teratogenic. The whole extracts of sediments were separated into 18 fractions and these fractions were then subjected to the same bioassays as the whole extracts. Fractions 7 to 15 of all four extracts were consistently more potent in both the Ames fluctuation and H295R assays. Much of this toxicity could be attributed to polycyclic aromatic hydrocarbons, sterols, and in fraction 7-naphthoic acids. Because the fraction containing polychlorinated biphenyls, polychlorodibenzodioxin/furan, dichlorodiphenyltrichloroethane, and several organophosphates did not cause any observable effects on hormone production or a mutagenic response, or were not detected in any of the samples, these compounds could be eliminated as causative agents for the observed effects. These results demonstrate the value of using EDA, which uses multiple bioassays and new fractionation techniques to assess toxicity. Furthermore, to our knowledge this is the first study using the recently developed H295R assay within EDA strategies.


Subject(s)
Endocrine Disruptors/toxicity , Geologic Sediments/chemistry , Mutagens/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Biological Assay/methods , Cell Line, Tumor , Chemical Fractionation , Embryo, Nonmammalian/drug effects , Gas Chromatography-Mass Spectrometry , Germany , Humans , Hydrocarbons, Chlorinated/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Rivers/chemistry , Salmonella/drug effects , Zebrafish
3.
Environ Sci Pollut Res Int ; 15(7): 536-53, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18936997

ABSTRACT

BACKGROUND, AIM, AND SCOPE: As a consequence of flood events, runoff and remobilized sediments may cause an increase of ecotoxicologically relevant effects from contaminant reservoirs. Aquatic and terrestrial organisms as well as cattle and areas of settlement are exposed to dislocated contaminants during and after flood events. In this study, the impacts of two flood events triggered by intense rain at the rivers Neckar and Rhine (Southern Germany) were studied. Effects in correlation to flood flow were assessed at the river Neckar using samples collected at frequent intervals. River Rhine suspended particulate matter (SPM) was sampled over a longer period at normal flow and during a flood event. Three cell lines (H4L1.1c4, GPC.2D.Luc, RTL-W1) were used to compare Ah receptor agonist activity in different biotest systems. Multilayer fractionation was performed to identify causative compounds, focusing on persistent organic contaminants. MATERIALS AND METHODS: Native water and SPM of flood events were collected at the river Neckar and at the monitoring station (Rheinguetestation, Worms, Germany) of the river Rhine. Water samples were XAD-extracted. SPM were freeze-dried and Soxhlet-extracted using acetone and finally dissolved in dimethyl sulfoxide. Resulting crude extracts were analyzed for cytotoxicity with the neutral red assay. Aryl hydrocarbon receptor (AhR) agonist activity was measured in a set of biological test systems (DR-CALUX, GPC.2D, and ethoxyresorufin-O-deethylase (EROD) assay) and different cell lines. In addition, crude extracts were fractionated using a combined method of multilayer (sequence of acidified silica layers) and carbon fractionation. Fractions from the multilayer fractionation contained persistent organic compounds (polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and some polycyclic aromatic hydrocarbon (PAHs)); fractions from the carbon fractionation were separated into a PCDD/F and a PCB fraction. Dioxin-like activity of multilayer and carbon fractions was determined in the EROD assay and expressed as biological toxicity equivalency concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (bio-TEQs). The calculation of chemical equivalency concentrations (chem-TEQs) and comparison to bio-TEQ values allowed the determination of the contribution of the analyzed persistent compounds to the total biological effects measured. RESULTS: Soluble compounds in native and extracted water samples resulted in no or minor activity in the toxicity tests, respectively. Filter residues of native water caused increased AhR-mediated activity at the peak of the flood. Activities of SPM of the river Neckar correlated well with the flow rate indicating a flood-dependent increase of toxicity culminating at the peak of flow. River Rhine SPM showed a decrease of activity regarding an SPM sample of the flood event compared to a long-term sample. Excellent correlations with AhR agonistic activity were determined for DR-CALUX and EROD assay, while the GPC.2D assay did not correlate with both other biotests. The activity of persistent dioxin-like acting compounds in multilayer and carbon fractionated PCDD/F and PCB fractions was low if compared to corresponding crude extracts. The congener pattern of PCDD/F revealed that the contaminations mainly originated from products and productions of the chlorine and organochlorine industries. DISCUSSION: Native and extracted water samples could be shown to contain little or no cytotoxic or AhR agonistic compounds. In contrast, particle-bound compounds were shown to be the relevant effect-causing fraction, as indicated by the activities of filter residues of native water and SPM. Compounds other than fractionated persistent PCBs and PCDD/Fs were more relevant to explain AhR-mediated activities of crude flood SPM at both rivers assessed. Biologically detected activities could at least in part be traced back to chemically analyzed and quantified compounds. CONCLUSIONS: The calculation of the portion of persistent PCBs and PCDD/Fs in multilayer fractions causing the high inductions in the EROD assay in combination with chemical analysis provides a suitable tool to assess dioxin-like activity of persistent compounds in SPM sampled over the course of flood events. Depending on the catchment area and annual course of flood events, end points may either indicate an increase or a decrease of activity. In order to determine the ecological hazard potential of mobilized contaminants during flood events, the focus should be set on particle-bound pollutants. Furthermore, PCDD/Fs and PCBs, commonly expected to be the most relevant pollutants in river systems, could be shown to contribute only to a minor portion of the overall AhR-mediated activity. However, they might be most relevant for human exposure when considering persistence and bioaccumulation-biomagnification in the food chain. RECOMMENDATIONS AND PERSPECTIVES: As a consequence of climate change, flood events will increase in frequency and intensity at least in some regions such as Central Europe. Thus, it is crucial to identify the potential hazard of (re-)mobilized contaminants from reservoirs dislocated via floods and threatening especially aquatic organisms and cattle grazing in flood plains. Since other less persistent compounds seem to be more relevant to explain AhR-mediated activities in flood SPM, nonconventional PAHs and more polar compounds also need to be considered for risk assessment. Effect-directed analysis using broad-range fractionation methods taking into account compounds from polar to nonpolar should be applied for identification of pollutants causing biological effects, thus integrating biological and chemical parameters.


Subject(s)
Dioxins/toxicity , Environmental Pollutants/analysis , Floods , Particulate Matter/toxicity , Receptors, Aryl Hydrocarbon/agonists , Rivers , Carbon , Climate , Cytochrome P-450 CYP1A1/metabolism , Dioxins/analysis , Fresh Water/analysis , Geologic Sediments , Germany , Hydrogen-Ion Concentration , Particulate Matter/analysis , Particulate Matter/isolation & purification , Polychlorinated Dibenzodioxins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...