Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 21(14): 16648-56, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23938516

ABSTRACT

Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, we assemble the central components of a spectral-domain OCT system on a silicon chip. The spectrometer comprises an arrayed-waveguide grating with 136-nm free spectral range and 0.21-nm wavelength resolution. The beam splitter is realized by a non-uniform adiabatic coupler with its 3-dB splitting ratio being nearly constant over 150 nm. With this device whose overall volume is 0.36 cm(3) we demonstrate high-quality in vivo imaging in human skin with 1.4-mm penetration depth, 7.5-µm axial resolution, and a signal-to-noise ratio of 74 dB. Considering the reasonable performance of this early OCT on-a-chip system and the anticipated improvements in this technology, a completely different range of devices and new fields of applications may become feasible.


Subject(s)
Image Enhancement/instrumentation , Interferometry/instrumentation , Silicon/chemistry , Skin/cytology , Spectrum Analysis/instrumentation , Tomography, Optical Coherence/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
2.
Opt Lett ; 38(6): 941-3, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23503267

ABSTRACT

The growth of silicon oxynitride thin films applying remote inductively coupled, plasma-enhanced chemical vapor deposition is optimized toward high optical quality at a deposition temperature as low as 150°C. Propagation losses of 0.5±0.05 dB/cm, 1.6±0.2 dB/cm, and 0.6±0.06 dB/cm are measured on as-deposited waveguides for wavelengths of 1300, 1550, and 1600 nm, respectively. Films were deposited onto a 0.25 µm technology mixed-signal CMOS chip to show the application perspective for three-dimensional integrated optoelectronic chips.

3.
Opt Express ; 20(16): 18313-8, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-23038381

ABSTRACT

We present a new synchronized design for flattening the passband of an arrayed-waveguide grating (AWG) over a broad wavelength range of 90 nm. A wavelength-insensitive 3-dB balanced coupler is designed to be used in duplicate in a Mach-Zehnder interferometer (MZI); the phase deviation created by one of the balanced couplers is cancelled by flipping the other coupler around. This MZI is arranged in tandem with the AWG such that the output signal of the MZI is the input signal of the AWG. We demonstrate a 5-channel, 18-nm-spacing AWG with a 0.5-dB bandwidth of 12 nm over a 90-nm spectral range. A low-loss cascaded AWG system is demonstrated by using the MZI-synchronized flat-top AWG as a primary filter.

4.
Opt Lett ; 37(2): 181-3, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22854460

ABSTRACT

We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.

5.
Opt Lett ; 36(23): 4629-31, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22139265

ABSTRACT

An integrated arrayed-waveguide grating fabricated in silicon-oxynitride technology is applied to Raman spectroscopy. After its validation by reproducing the well-known spectrum of cyclohexane, polarized Raman spectra are measured of extracted human teeth containing localized initial carious lesions. Excellent agreement is obtained between the spectra of healthy and carious tooth enamel measured with our integrated device and spectra recorded using a conventional Raman spectrometer. Our results represent a step toward the realization of compact, hand-held, integrated spectrometers, e.g. for the detection of dental caries at an early stage.


Subject(s)
Spectrum Analysis, Raman/instrumentation , Dental Caries/diagnosis , Dental Caries/metabolism , Dental Enamel/chemistry , Humans , Optical Phenomena
6.
Opt Lett ; 36(5): 603-5, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368921

ABSTRACT

We report the fabrication and performance of a highly efficient, monolithic distributed-Bragg-reflector channel waveguide laser in ytterbium-doped aluminum oxide. The 1 cm long device was fabricated on a standard thermally oxidized silicon substrate and was optically pumped with a 976 nm laser diode. Single-longitudinal-mode and single-polarization operation was achieved at a wavelength of 1021.2 nm. Continuous-wave output powers of up to 47 mW and a launched pump power threshold of 10 mW resulted in a slope efficiency of 67%.

7.
Opt Express ; 19(6): 5277-82, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445164

ABSTRACT

Gd3+(29.5%)-Lu3+(29.0%)-Tm3+(1.5%) co-doped KY(WO4)2 layers were grown onto KY(WO4)2 substrates by liquid-phase epitaxy. Ridge-type channel waveguides with a thickness of 6.6 µm and a width of 7.5-12.5 µm were microstructured 1.5 µm deep by Ar+-beam milling and overgrown with pure KY(WO4)2 as a cladding layer. An upper limit of ~0.11 dB/cm for the waveguide propagation loss at the laser wavelength was determined. Laser experiments with butt-coupled dielectric mirrors demonstrated maximum output powers of 149 mW and 76 mW and slope efficiencies of 31.5% and 17.0% when pumping at 794 nm and 802 nm in TM and TE polarization, respectively. The lowest threshold was 7 mW. The laser wavelength was found to shift from 1930 nm via 1906 nm to 1846 nm for outcoupling efficiencies from 2% via 8% to 2×8%.

8.
Opt Lett ; 35(1): 73-5, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20664677

ABSTRACT

Integrated Al(2)O(3):Er(3+) channel waveguide ring lasers were realized on thermally oxidized silicon substrates. High pump power coupling into and low laser output power coupling from the ring is achieved in a straightforward design. Output powers of up to 9.5 microW and slope efficiencies of up to 0.11% were measured while lasing was observed for a threshold diode-pump power as low as 6.4 mW for ring lasers with cavity lengths varying from 2.0 to 5.5 cm. Wavelength selection in the range 1530-1557 nm was demonstrated by varying the length of the output coupler from the ring.

9.
Opt Express ; 18(9): 8853-8, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588730

ABSTRACT

Epitaxially grown, 2.4-microm-thin layers of KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+), which exhibit a high refractive index contrast with respect to the undoped KY(WO(4))(2) substrate, have been microstructured by Ar beam milling, providing 1.4-microm-deep ridge channel waveguides of 2 to 7 microm width, and overgrown by an undoped KY(WO(4))(2) layer. Channel waveguide laser operation was achieved with a launched pump power threshold of only 5 mW, a slope efficiency of 62% versus launched pump power, and 76 mW output power.

10.
Opt Lett ; 35(14): 2394-6, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20634841

ABSTRACT

We report the realization and performance of a distributed feedback channel waveguide laser in erbium-doped aluminum oxide on a standard thermally oxidized silicon substrate. The diode-pumped continuous-wave laser demonstrated a threshold of 2.2 mW absorbed pump power and a maximum output power of more than 3 mW with a slope efficiency of 41.3% versus absorbed pump power. Single-longitudinal-mode and single-polarization operation was achieved with an emission linewidth of 1.70+/-0.58 kHz (corresponding to a Q factor of 1.14 x 10(11)), which was centered at a wavelength of 1545.2 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...