Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1159728, 2023.
Article in English | MEDLINE | ID: mdl-37153216

ABSTRACT

In ski mountaineering it is the goal to reach the top of a mountain by sheer muscle force. The specific equipment (flexible boot, only toe fixated binding, and a skin on the ski to prevent from slipping backwards) enables the skier to move up the hill ergonomically, where the heel part of the binding offers a special adaptation possibility. The so-called riser height supports the heel standing height and can be adjusted to individually preferred settings. General recommendations suggest using lower heel support in flat ascents and higher heel support in steep ascents to maintain upright posture and lower the strain. Still, it remains unclear whether the application of riser height affects the physiological response during ski mountaineering. This study was designed to investigate the effects of riser height on physiological response during indoor ski mountaineering. Nineteen participants took part in the study and walked on a treadmill with ski mountaineering equipment. The three available riser heights (low, medium, and high) were applied randomized at 8%, 16%, and 24% gradient. Results show that global physiological measurements like heart rate (p = 0.34), oxygen uptake (p = 0.26) or blood lactate (p = 0.38) values were not affected by changes in riser height. But local measurements of muscle oxygen saturation were affected by the riser height. Additionally comfort and rating of perceived exertion were also prone to changes in riser height. These results suggest differences on local measurements and perceived parameters, while global physiological measurements did not change. The results are in line with the existing recommendations but need to be confirmed in an outdoor setting as well.

2.
Front Sports Act Living ; 4: 886025, 2022.
Article in English | MEDLINE | ID: mdl-36060627

ABSTRACT

In ski mountaineering, equipment and its interaction with the exercising human plays an important role. The binding, as the crucial connection between boot and ski, must ensure safe fixation during downhill skiing and a free moving heel when walking uphill. Uphill, the binding offers the possibility to adopt the height of the heel (riser height) to personal preferences and the steepness of the ascent. This possible adjustment and its influence on various biomechanical parameters are the focus of this work. For this study, 19 male leisure ski mountaineers were tested on a treadmill, ascending at a fixed submaximal speed (3.9 ± 0.4 km·h-1) at 8, 16, and 24% gradient and with three heel riser heights, low (0 cm), medium (3.0 cm) and high (5.3 cm). The applied biomechanical measurement systems included a 3D motion capture system in sagittal plane, pressure insoles, a with strain gauges instrumented pole, spirometry and a comfort scale. Step length and step frequency were influenced by the riser height and the gradient (p ≤ 0.001). The high riser height decreased the step length by 5% compared to the low riser height over all tested gradients, while steps were 9.2% longer at the 24% gradient compared to the 8% gradient over all three riser heights. The high riser height revealed a force impulse of the pole 13% lower than using the low riser height (p < 0.001). Additionally, the high riser height reduced the range of motion of the knee joint and the ankle joint compared to the low riser height (p < 0.001). Therefore, advantageous settings can be derived, with the low riser height creating proper range of motion for ankle, knee and hip joint and higher propulsion via the pole at 8%, while higher riser heights like the medium setting do so at steeper gradients. These findings are in line with the conducted comfort scale. We would not recommend the highest riser height for the analyzed gradients in this study, but it might be an appropriate choice for higher gradients.

3.
J Sports Sci Med ; 20(2): 250-257, 2021 06.
Article in English | MEDLINE | ID: mdl-34211317

ABSTRACT

Competitive ski mountaineering (SKIMO) has achieved great popularity within the past years. However, knowledge about the predictors of performance and physiological response to SKIMO racing is limited. Therefore, 21 male SKIMO athletes split into two performance groups (elite: VO2max 71.2 ± 6.8 ml· min-1· kg-1 vs. sub-elite: 62.5 ± 4.7 ml· min-1· kg-1) were tested and analysed during a vertical SKIMO race simulation (523 m elevation gain) and in a laboratory SKIMO specific ramp test. In both cases, oxygen consumption (VO2), heart rate (HR), blood lactate and cycle characteristics were measured. During the race simulation, the elite athletes were approximately 5 min faster compared with the sub-elite (27:15 ± 1:16 min; 32:31 ± 2:13 min; p < 0.001). VO2 was higher for elite athletes during the race simulation (p = 0.046) and in the laboratory test at ventilatory threshold 2 (p = 0.005) and at maximum VO2 (p = 0.003). Laboratory maximum power output is displayed as treadmill speed and was higher for elite than sub-elite athletes (7.4 ± 0.3 km h-1; 6.6 ± 0.3 km h-1; p < 0.001). Lactate values were higher in the laboratory maximum ramp test than in the race simulation (p < 0.001). Pearson's correlation coefficient between race time and performance parameters was highest for velocity and VO2 related parameters during the laboratory test (r > 0.6). Elite athletes showed their superiority in the race simulation as well as during the maximum ramp test. While HR analysis revealed a similar strain to both cohorts in both tests, the superiority can be explainable by higher VO2 and power output. To further push the performance of SKIMO athletes, the development of named factors like power output at maximum and ventilatory threshold 2 seems crucial.


Subject(s)
Athletic Performance/physiology , Competitive Behavior/physiology , Mountaineering/physiology , Skiing/physiology , Adult , Heart Rate , Humans , Lactic Acid/blood , Male , Oxygen Consumption , Physical Fitness , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...